Detailed physics-based computer models of fuel cells can be computationally prohibitive for applications such as optimization and uncertainty quantification. Such applications can require a very high number of runs in order to extract reliable results. Approximate models based on spatial homogeneity or data-driven techniques can serve as surrogates when scalar quantities such as the cell voltage are of interest. When more detailed information is required, e.g., the potential or temperature field, computationally inexpensive surrogate models are difficult to construct. In this paper, we use dimensionality reduction to develop a surrogate model approach for high-fidelity fuel cell codes in cases where the target is a field. A detailed 3D model of a high-temperature polymer electrolyte membrane (PEM) fuel cell is used to test the approach. We develop a framework for using such surrogate models to quantify the uncertainty in a scalar/functional output, using the field output results. We propose a number of alternative methods including a semi-analytical approach requiring only limited computational resources.

References

References
1.
Shah
,
A. A.
,
Luo
,
K.
,
Ralph
,
T. R.
, and
Walsh
,
F. C.
,
2011
, “
Recent Trends and Developments in Polymer Electrolyte Membrane Fuel Cell Modelling
,”
Electrochim. Acta
,
56
(
11
), pp.
3731
3757
.
2.
Ramadesigan
,
V.
,
Northrop
,
P. W. C.
,
De
,
S.
,
Santhanagopalan
,
S.
,
Braatz
,
R. D.
, and
Subramanian
,
V. R.
,
2012
, “
Modeling and Simulation of Lithium-Ion Batteries From a Systems Engineering Perspective
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
R31
R45
.
3.
Franco
,
A. A.
,
2013
, “
Multiscale Modelling and Numerical Simulation of Rechargeable Lithium Ion Batteries: Concepts, Methods and Challenges
,”
RSC Adv.
,
3
(
32
), pp.
13027
13058
.
4.
Shah
,
A. A.
, and
Walsh
,
F. C.
,
2008
, “
A Model for Hydrogen Sulfide Poisoning in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
185
(
1
), pp.
287
301
.
5.
Shah
,
A. A.
,
Ralph
,
T. R.
, and
Walsh
,
F. C.
,
2009
, “
Modeling and Simulation of the Degradation of Perfluorinated Ion-Exchange Membranes in PEM Fuel Cells
,”
J. Electrochem. Soc.
,
156
(
4
), pp.
B465
B484
.
6.
Eldred
,
M.
, and
Dunlavy
,
D.
,
2006
, “
Formulations for Surrogate-Based Optimization With Data Fit, Multifidelity, and Reduced-Order Models
,”
AIAA
Paper No. 2006-7117.
7.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries
,”
J. Power Sources
,
198
, pp.
359
367
.
8.
Kumar
,
V. S.
,
2013
, “
Reduced Order Model for a Lithium Ion Cell With Uniform Reaction Rate Approximation
,”
J. Power Sources
,
222
, pp.
426
441
.
9.
Gambhire
,
P.
,
Ganesan
,
N.
,
Basu
,
S.
,
Hariharan
,
K. S.
,
Kolake
,
S. M.
,
Song
,
T.
,
Oh
,
D.
,
Yeo
,
T.
, and
Doo
,
S.
,
2015
, “
A Reduced Order Electrochemical Thermal Model for Lithium Ion Cells
,”
J. Power Sources
,
290
, pp.
87
101
.
10.
Li
,
X.
,
Choe
,
S.-Y.
, and
Joe
,
W. T.
,
2015
, “
A Reduced Order Electrochemical and Thermal Model for a Pouch Type Lithium Ion Polymer Battery With LiNixMnyCo1−x−yO2/LiFePO4 Blended Cathode
,”
J. Power Sources
,
294
, pp.
545
555
.
11.
Kumar
,
V. S.
,
Gambhire
,
P.
,
Hariharan
,
K. S.
,
Khandelwal
,
A.
,
Kolake
,
S. M.
,
Oh
,
D.
, and
Doo
,
S.
,
2014
, “
An Explicit Algebraic Reduced Order Algorithm for Lithium Ion Cell Voltage Prediction
,”
J. Power Sources
,
248
, pp.
383
387
.
12.
Kim
,
G.-S.
,
Sui
,
P. C.
,
Shah
,
A. A.
, and
Djilali
,
N.
,
2010
, “
Reduced-Dimensional Models for Straight-Channel Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
195
(
10
), pp.
3240
3249
.
13.
Subramanian
,
V. R.
,
Boovaragavan
,
V.
,
Ramadesigan
,
V.
, and
Arabandi
,
M.
,
2009
, “
Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions
,”
J. Electrochem. Soc.
,
156
(
4
), pp.
A260
A271
.
14.
Waag
,
W.
,
Fleischer
,
C.
, and
Sauer
,
D. U.
,
2014
, “
Critical Review of the Methods for Monitoring of Lithium-Ion Batteries in Electric and Hybrid Vehicles
,”
J. Power Sources
,
258
, pp.
321
339
.
15.
Chang
,
K.-Y.
,
2011
, “
The Optimal Design for PEMFC Modeling Based on Taguchi Method and Genetic Algorithm Neural Networks
,”
Int. J. Hydrogen Energy
,
36
(21), pp.
13683
13694
.
16.
Xu
,
C.
,
Biegler
,
L.
, and
Jhon
,
M. S.
,
2006
, “
Numerical Systematic Optimization of a H2 PEMFC Power Generation System With Heat Integration
,”
AIChE J.
,
52
(
7
), pp.
2496
2506
.
17.
Secanell
,
M.
,
Wishart
,
J.
, and
Dobson
,
P.
,
2011
, “
Computational Design and Optimization of Fuel Cells and Fuel Cell Systems: A Review
,”
J. Power Sources
,
196
(8), pp.
3690
3704
.
18.
Song
,
D.
,
Wang
,
Q.
,
Liu
,
Z.
,
Navessin
,
T.
,
Eikerling
,
M.
, and
Holdcroft
,
S.
,
2004
, “
Numerical Optimization Study of the Catalyst Layer of PEM Fuel Cell Cathode
,”
J. Power Sources
,
126
(1–2), pp.
104
111
.
19.
Grujicic
,
M.
, and
Chittajallu
,
K.
,
2004
, “
Geometrical Optimization of the Cathode in Polymer Electrolyte Membrane (PEM) Fuel Cells
,”
Chem. Eng. Sci.
,
59
(
24
), pp.
5883
5895
.
20.
Mawardi
,
A.
,
Yang
,
F.
, and
Pitchumani
,
R.
,
2005
, “
Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell for Maximum Power Density
,”
ASME J. Fuel Cell Sci. Technol.
,
2
(
2
), pp.
121
135
.
21.
Rahman
,
M.
,
Anwar
,
S.
, and
Izadian
,
A.
,
2016
, “
Electrochemical Model Parameter Identification of a Lithium-Ion Battery Using Particle Swarm Optimization Method
,”
J. Power Sources
,
307
, pp.
86
97
.
22.
Wu
,
J.
,
Liu
,
Q.
, and
Fang
,
H.
,
2006
, “
Toward the Optimization of Operating Conditions for Hydrogen Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
156
(
2
), pp.
388
399
.
23.
Miao
,
J.-M.
,
Cheng
,
S.-J.
, and
Wu
,
S.-J.
,
2011
, “
Metamodel Based Design Optimization Approach in Promoting the Performance of Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
23
), pp.
15283
15294
.
24.
Xing
,
L.
,
Song
,
X.
,
Scott
,
K.
,
Pickert
,
V.
, and
Cao
,
W.
,
2013
, “
Multi-Variable Optimisation of PEMFC Cathodes Based on Surrogate Modelling
,”
Int. J. Hydrogen Energy
,
38
(
33
), pp.
14295
14313
.
25.
Peksen
,
M.
,
Blum
,
L.
, and
Stolten
,
D.
,
2012
, “
Optimisation of a Solid Oxide Fuel Cell Reformer Using Surrogate Modelling, Design of Experiments and Computational Fluid Dynamics
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
12540
12547
.
26.
Du
,
W.
,
Xue
,
N.
,
Shyy
,
W.
, and
Martins
,
J. R. R. A.
,
2014
, “
A Surrogate-Based Multi-Scale Model for Mass Transport and Electrochemical Kinetics in Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
161
(
8
), pp.
E3086
E3096
.
27.
Maheshwari
,
A.
,
Dumitrescu
,
M. A.
,
Destro
,
M.
, and
Santarelli
,
M.
,
2016
, “
Inverse Parameter Determination in the Development of an Optimized Lithium Iron Phosphate a Graphite Battery Discharge Model
,”
J. Power Sources
,
307
, pp.
160
172
.
28.
Zhang
,
W.
,
Cho
,
C.
,
Piao
,
C.
, and
Choi
,
H.
,
2016
, “
Sobol's Sensitivity Analysis for a Fuel Cell Stack Assembly Model With the Aid of Structure-Selection Techniques
,”
J. Power Sources
,
301
, pp.
1
10
.
29.
Wong
,
E.
,
1971
,
Stochastic Processes in Information and Dynamical Systems
,
McGraw-Hill
,
New York
.
30.
Cai
,
L.
, and
White
,
R. E.
,
2009
, “
Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulation
,”
J. Electrochem. Soc.
,
156
(
3
), pp.
A154
A161
.
31.
Cai
,
L.
, and
White
,
R. E.
,
2010
, “
An Efficient Electrochemical-Thermal Model for a Lithium-Ion Cell by Using the Proper Orthogonal Decomposition Method
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
A1188
A1195
.
32.
Dao
,
T.-S.
,
Vyasarayania
,
C. P.
, and
McPhee
,
J.
,
2012
, “
Simplification and Order Reduction of Lithium-Ion Battery Model Based on Porous-Electrode Theory
,”
J. Power Sources
,
198
, pp.
329
337
.
33.
Esfahanian
,
V.
,
Ansari
,
A. B.
, and
Torabi
,
F.
,
2015
, “
Simulation of Lead-Acid Battery Using Model Order Reduction
,”
J. Power Sources
,
279
, pp.
294
305
.
34.
Shah
,
A. A.
,
Xing
,
W.
, and
Triantafyllidis
,
V.
,
2017
, “
Reduced Order Modelling of Parameter-Dependent, Linear and Nonlinear Dynamic Partial Differential Equation Models
,”
Proc. R. Soc. A
,
473
(2200), p. 20160809.
35.
Ballarin
,
F.
,
Manzoni
,
A.
,
Quarteroni
,
A.
, and
Rozza
,
G.
,
2015
, “
Supremizer Stabilization of POD-Galerkin Approximation of Parametrized Steady Incompressible Navier–Stokes Equations
,”
Int. J. Numer. Methods Eng.
,
102
(
5
), pp.
1136
1161
.
36.
Razbani
,
O.
, and
Assadi
,
M.
,
2014
, “
Artificial Neural Network Model of a Short Stack Solid Oxide Fuel Cell Based on Experimental Data
,”
J. Power Sources
,
246
, pp.
581
586
.
37.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
38.
Conti
,
S.
, and
O'Hagan
,
A.
,
2010
, “
Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models
,”
J. Stat. Plann. Inference
,
140
(
3
), pp.
640
651
.
39.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightley
,
M.
,
2008
, “
Computer Model Calibration Using High-Dimensional Output
,”
J. Am. Stat. Assoc.
,
103
(
482
), pp.
570
583
.
40.
Xing
,
W.
,
Shah
,
A. A.
, and
Nair
,
P. B.
,
2014
, “
Reduced Dimensional Gaussian Process Emulators of Parametrized Partial Differential Equations Based on Isomap
,”
Proc. R. Soc. A
,
471
(
2174
), p.
20140697
.
41.
Triantafyllidis
,
V.
,
Xing
,
W.
,
Shah
,
A. A.
, and
Nair
,
P. B.
,
2016
, “
Neural Network Emulation of Spatio-Temporal Data Using Linear and Nonlinear Dimensionality Reduction
,”
Advanced Computer and Communication Engineering Technology
(Lecture Notes in Electrical Engineering, Vol.
362
),
Springer International Publishing
,
Cham, Switzerland
, pp.
1015
1029
.
42.
Xing
,
W. W.
,
Triantafyllidis
,
V.
,
Shah
,
A. A.
,
Nair
,
P. B.
, and
Zabaras
,
N.
,
2016
, “
Manifold Learning for the Emulation of Spatial Fields From Computational Models
,”
J. Comput. Phys.
,
326
, pp.
666
690
.
43.
Ubong
,
E. U.
,
Shi
,
Z.
, and
Wang
,
X.
,
2009
, “
Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell
,”
J. Electrochem. Soc.
,
156
(
10
), pp.
B1276
B1282
.
44.
Shah
,
A. A.
,
Kim
,
G. S.
,
Gervais
,
W.
,
Young
,
A.
,
Promislow
,
K.
,
Li
,
J.
, and
Ye
,
S.
,
2006
, “
The Effects of Water and Microstructure on the Performance of Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
160
(
2
), pp.
1251
1268
.
45.
Shah
,
A. A.
,
Kim
,
G. S.
,
Sui
,
P. C.
, and
Harvey
,
D.
,
2007
, “
Transient Non-Isothermal Model of a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
163
(
2
), pp.
793
806
.
46.
Bird
,
B.
,
Stewart
,
W.
, and
Lightfoot
,
E.
,
2002
,
Transport Phenomena
,
Wiley
,
New York
.
47.
Jolliffe
,
I. T.
,
2002
,
Principal Component Analysis
(Springer Series in Statistics),
Springer
,
New York
.
48.
Kennedy
,
M.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Codes
,”
J. R. Stat. Soc. Ser. B Stat. Methodol.
,
63
(
3
), pp.
425
464
.
49.
Bastos
,
L. S.
, and
O'Hagan
,
A.
,
2009
, “
Diagnostics for Gaussian Process Emulators
,”
Technometrics
,
51
(
4
), pp.
425
438
.
50.
Sobol
,
I. M.
,
1976
, “
Uniformly Distributed Sequences With an Addition Uniform Property
,”
USSR Comput. Math. Math. Phys.
,
16
(
5
), pp.
236
242
.
51.
O'Hagan
,
A.
,
2011
, “
Uncertainty Analysis: The Variance of the Variance
”, Managing Uncertainty in Complex Models,
Research Councils UK
, Swindon, UK.
You do not currently have access to this content.