Attempts have been made to simulate numerically the conductivity degradation of solid oxide fuel cell (SOFC) YSZ electrolyte; physicochemical model has been constructed on the basis of experimental conductivities of Pt/1%NiO-doped YSZ/Pt cells under OCV condition. The temperature effect was extracted from the time constant for degradation caused by one thermal activation process (namely Y-diffusion), whereas the oxygen potential effect was determined by those Raman peak ratios between the tetragonal and the cubic phases which linearly change in relation to the conductivity. The electrical properties of the YSZ electrolyte before and after the transformation are taken into account. The time constant is directly correlated with Y-diffusion with proper critical diffusion length (∼10 nm), while the Y-diffusion can be enhanced on the reduction of NiO; this gives rise to the oxygen potential dependence. The most important objective of simulating the conductivity degradation is to reproduce the oxygen potential profile shift on transformation. Detailed comparison between experimental and simulation results reveal that the shift of oxygen potential profile, therefore, the conductivity profile change inside the YSZ electrolyte can well account for the Raman spectra profile. This also reveals that with decreasing temperature, there appear other kinetic factors of weakening or diminishing enhancing effects by NiO reduction. This may be important in interpreting the ohmic losses in real stacks, because there are differences in time constant or in magnitude of degradation between the pellets and those industrial stacks in which transformation was confirmed by Raman spectroscopy.

References

References
1.
Hosoi
,
K.
, and
Nakabaru
,
M.
,
2009
, “
Status of National Project for SOFC Development in Japan
,”
ECS Trans.
,
25
(
2
), p.
11
.
2.
Hosoi
,
K.
,
Ito
,
M.
, and
Fukae
,
M.
,
2011
, “
Status of National Project for SOFC Development in Japan
,”
ECS Trans.
,
35
(
1
), pp.
11
18
.
3.
Horiuchi
,
K.
,
2013
, “
Current Status of National SOFC Project in Japan
,”
ECS Trans.
,
57
(
1
), pp.
3
10
.
4.
Kadawaki
,
M.
,
2015
, “
Current Status of National SOFC Projects in Japan
,”
ECS Trans.
,
68
(
1
), pp.
15
22
.
5.
Yokokawa
,
H.
,
2009
, “
Overview of Solid Oxide Fuel Cell Degradation
,”
Handbook of Fuel Cells Fundamentals Technology and Application
, Vol.
6
,
W.
Vielstich
,
H.
Yokokawa
, and
H. A.
Gasteiger
, eds.,
Wiley
, Chichester, UK, pp.
923
932
.
6.
Yokokawa
,
H.
,
Sakai
,
N.
,
Horita
,
T.
, and
Yamaji
,
K.
,
2009
, “
Impact of Impurities on Materials Reliability in SOFC Stack/Modules
,”
Handbook of Fuel Cells Fundamentals Technology and Application
, Vol.
6
,
W.
Vielstich
,
H.
Yokokawa
, and
H. A.
Gasteiger
, eds.,
Wiley
, Chichester, UK, pp.
979
991
.
7.
Kishimoto
,
H.
,
Horita
,
T.
, and
Yokokawa
,
H.
,
2013
, “
Long Term Operating Stability
,”
Solid Oxide Fuel Cells: From Materials to System Modeling
,
T. S.
Zhao
and
M.
Ni
, eds.,
RSC Publishing
, London, pp.
288
326
.
8.
Yokokawa
,
H.
, and
Horita
,
T.
,
2013
, “
Solid Oxide Fuel Cell Materials: Durability, Reliability and Cost
,”
Encyclopedia of Sustainability Science and Technology
,
R. A.
Meyers
, ed.,
Springer-Verlag
, New York, pp.
9934
9968
.
9.
Yokokawa
,
H.
,
Tu
,
H.
,
Iwanschitz
,
B.
, and
Mai
,
A.
,
2008
, “
Fundamental Mechanisms Limiting Solid Oxide Fuel Cell Durability
,”
J. Power Sources
,
182
(
2
), pp.
400
412
.
10.
Yokokawa
,
H.
,
Horita
,
T.
,
Yamaji
,
K.
,
Kishimoto
,
H.
, and
Brito
,
M. E.
,
2010
, “
Materials Chemical Point of View for Durability Issues in Solid Oxide Fuel Cells
,”
J. Korean Ceram. Soc.
,
47
(
1
), pp.
26
38
.
11.
Yokokawa
,
H.
,
Yamaji
,
K.
,
Brito
,
M. E.
,
Kishimoto
,
H.
, and
Horita
,
T.
,
2011
, “
General Considerations on Degradation of SOFC Anodes and Cathodes Due to Impurities in Gases
,”
J. Power Sources
,
196
(
17
), pp.
7070
7075
.
12.
Yokokawa
,
H.
,
Horita
,
T.
,
Yamaji
,
K.
,
Kishimoto
,
H.
, and
Brito
,
M. E.
,
2012
, “
Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration
,”
J. Korean Ceram. Soc.
,
49
(
1
), pp.
11
18
.
13.
Yokokawa
,
H.
,
Horita
,
T.
,
Yamaji
,
K.
,
Kishimoto
,
H.
,
Yamamoto
,
T.
,
Yoshikawa
,
M.
,
Mugikura
,
Y.
, and
Tomida
,
K.
,
2013
, “
Chromium Poisoning of LaMnO3-Based Cathode Within Generalized Approach
,”
Fuel Cells
,
13
(
4
), pp.
526
535
.
14.
Yokokawa
,
H.
,
2015
, “
Towards Comprehensive Description of Stack Durability/Reliability Behavior
,”
Fuel Cells
,
15
(
4
), pp.
652
668
.
15.
Yokokawa
,
H.
,
2015
, “
Current Status of Rapid Evaluation of Durability of Six SOFC Stacks Within NEDO Project
,”
ECS Trans.
,
68
(
1
), pp.
1827
1836
.
16.
Suzuki
,
M.
,
Takuwa
,
Y.
,
Inoue
,
S.
, and
Higaki
,
K.
,
2013
, “
Durability Verification of Residential SOFC CHP System
,”
ECS Trans.
,
57
(
1
), pp.
309
314
.
17.
Miyamoto
,
K.
,
Mihara
,
M.
,
Oozawa
,
H.
,
Hiwatashi
,
K.
,
Tomida
,
K.
,
Nishiura
,
M.
,
Kishizawa
,
H.
,
Mori
,
R.
, and
Kobayashi
,
Y.
,
2015
, “
Recent Progress of SOFC Combined Cycle System With Segmented-in-Series Tubular Type Cell Stack at MHPS
,”
ECS Trans.
,
68
(
1
), pp.
51
58
.
18.
Mori
,
N.
,
Sato
,
Y.
,
Nakai
,
H.
,
Iha
,
M.
,
Takada
,
T.
, and
Konoike
,
T.
,
2015
, “
Development of a Novel Co-Fired SOFC at Murata
,”
ECS Trans.
,
68
(
1
), pp.
1871
1878
.
19.
Yoshikawa
,
M.
,
Yamamoto
,
T.
,
Asano
,
K.
,
Yasumoto
,
K.
, and
Mugikura
,
Y.
,
2015
, “
Performance Degradation Analysis of Different Type SOFCs
,”
ECS Trans.
,
68
(
1
), pp.
2199
2208
.
20.
Mugikura
,
Y.
,
Yasumoto
,
K.
,
Morita
,
H.
,
Yoshikawa
,
M.
, and
Yamamoto
,
T.
,
2013
, “
Performance Evaluation Technology for Long Term Durability and Reliability of SOFCs
,”
ECS Trans.
,
57
(
1
), pp.
649
656
.
21.
Inoue
,
S.
,
Nonaka
,
H.
,
Saito
,
T.
,
Yoda
,
M.
,
Nakao
,
T.
, and
Takuwa
,
Y.
,
2015
, “
High Durability Electrodeposition Painting for SOFC Metal Interconnector
,”
ECS Trans.
,
68
(
1
), pp.
1589
1596
.
22.
Mori
,
N.
,
Sato
,
Y.
,
Iha
,
M.
,
Takada
,
T.
,
Konoike
,
T.
,
Kishimoto
,
H.
,
Yamaji
,
K.
, and
Yokokawa
,
H.
,
2015
, “
Sulfur Poisoning of LSCF Cathode in Single Step Co-Fired SOFC
,”
ECS Trans.
,
68
(
1
), pp.
1015
1022
.
23.
Matsui
,
T.
,
Kim
,
J.-Y.
,
Muroyama
,
H.
,
Shimazu
,
M.
,
Abe
,
T.
,
Miyao
,
M.
, and
Eguchi
,
K.
,
2012
, “
Anode Microstructure Change Upon Long-Term Operation for the Cathode-Supported Tubular-Type SOFC
,”
Solid State Ionics
,
225
, pp.
50
54
.
24.
Kanae
,
S.
,
Toyofuku
,
Y.
,
Kawabata
,
T.
,
Inoue
,
Y.
,
Daigo
,
T.
,
Matsuda
,
J.
,
Chou
,
J.-T.
,
Shiratori
,
Y.
,
Taniguchi
,
S.
, and
Sasaki
,
K.
,
2015
, “
Microstructural Characterization of SrZrO3 Formation and the Influence to SOFC Performance
,”
ECS Trans.
,
68
(
1
), pp.
2463
2470
.
25.
Terada
,
K.
,
Kawada
,
T.
,
Sato
,
K.
,
Iguchi
,
F.
,
Yashiro
,
K.
,
Amezawa
,
K.
,
Kubo
,
M.
,
Yugami
,
H.
,
Hashida
,
T.
,
Mizusaki
,
J.
,
Watanabe
,
H.
,
Sasagawa
,
T.
, and
Aoyagi
,
H.
,
2011
, “
Multiscale Simulation of Electro-Chemo-Mechanical Coupling Behavior of PEN Structure Under SOFC Operation
,”
ECS Trans.
,
35
(
1
), pp.
923
933
.
26.
Muramatsu
,
M.
,
Kishimoto
,
H.
,
Yamaji
,
K.
,
Yashiro
,
K.
,
Kawada
,
T.
,
Terada
,
K.
, and
Yokokawa
,
H.
,
2015
, “
Electro-Chemical Potential Analysis of Zirconium Based on the Reaction-Diffusion Equations of Oxygen Ion and Electron Considering Phase Transformation
,”
ECS Trans.
,
68
(
1
), pp.
2363
2372
.
27.
Miyoshi
,
K.
,
Miyamae
,
T.
,
Iwai
,
H.
,
Saito
,
M.
,
Kishimoto
,
M.
, and
Yoshida
,
H.
,
2015
, “
Evaluation of Exchange Current Density for LSM Porous Cathode Based on Measurement of Three-Phase Boundary Length
,”
ECS Trans.
,
68
(
1
), pp.
657
664
.
28.
Jiao
,
Z.
,
Shimura
,
T.
, and
Shikazono
,
N.
,
2015
, “
Numerical Assessment of SOFC Anode Polarization With Microstructure Evolution
,”
ECS Trans.
,
68
(
1
), pp.
1281
1289
.
29.
Taniguchi
,
S.
,
Kadowaki
,
M.
,
Kawamura
,
H.
,
Yasuo
,
T.
,
Akiyama
,
Y.
,
Miyake
,
Y.
, and
Saitoh
,
T.
,
1995
, “
Degradation Phenomena in the Cathode of a Solid Oxide Fuel Cell With an Alloy Separator
,”
J. Power Sources
,
55
(
1
), pp.
73
79
.
30.
Yokokawa
,
H.
,
Horita
,
T.
,
Sakai
,
N.
,
Yamaji
,
J.
,
Brito
,
M. E.
,
Xiong
,
Y. P.
, and
Kishimoto
,
H.
,
2006
, “
Thermodynamic Considerations on Cr Poisoning in SOFC Cathodes
,”
Solid State Ionics
,
177
(35–36), pp.
3193
3198
.
31.
Xiong
,
Y. P.
,
Yamaji
,
K.
,
Horita
,
T.
,
Yokokawa
,
H.
,
Akikusa
,
J.
,
Eto
,
H.
, and
Inagaki
,
T.
,
2009
, “
Sulfur Poisoning of SOFC Cathodes
,”
J. Electrochem. Soc.
,
156
(
5
), pp.
B588
B592
.
32.
Wang
,
F.
,
Yamaji
,
K.
,
Cho
,
D.-H.
,
Shimonosono
,
T.
,
Kishimoto
,
H.
,
Brito
,
M. E.
,
Horita
,
T.
, and
Yokokawa
,
H.
,
2011
, “
Sulfur Poisoning on La0.6Sr0.4Co0.2Fe0.8O3 Cathode for SOFCs
,”
J. Electrochem. Soc.
,
158
(
11
), pp.
B1391
B1397
.
33.
Kishimoto
,
H.
,
Wang
,
F.
,
Cho
,
D. H.
,
Lv
,
P.
,
Bagarinao
,
K. D.
,
Yamaji
,
K.
,
Horita
,
T.
, and
Yokokawa
,
H.
,
2015
, “
Degradation of LSCF Cathode Induced by SO2 in Air
,”
ECS Trans.
,
68
(
1
), pp.
1045
1050
.
34.
Wang
,
F.
,
Kishimoto
,
H.
,
Develos-Bagarinao
,
K.
,
Yamaji
,
K.
,
Horita
,
T.
, and
Yokokawa
,
H.
,
2016
, “
Interrelation Between Sulfur Poisoning and Performance Degradation of LSCF Cathode for SOFCs
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
F899
F904
.
35.
Uchida
,
H.
,
Yoshida
,
M.
, and
Watanabe
,
M.
,
1995
, “
Effects of Ionic Conductivities of Zirconia Electrolytes on Polarization Properties of Platinum Anodes in Solid Oxide Fuel Cells
,”
J. Phys. Chem.
,
99
(
10
), pp.
3282
3287
.
36.
Uchida
,
H.
,
Yoshida
,
M.
, and
Watanabe
,
M.
,
1999
, “
Effect of Ionic Conductivity of Zirconia Electrolytes on the Polarization Behavior of Various Cathodes in Solid Fuel Cells
,”
J. Electrochem. Soc.
,
146
(
1
), pp.
1
7
.
37.
Kondoh
,
J.
,
Kawashima
,
T.
,
Kikuchi
,
S.
,
Tomii
,
Y.
, and
Ito
,
Y.
,
1998
, “
Effect of Aging on Yttria-Stabilized Zirconia: I. A Study of Its Electrochemical Properties
,”
J. Electrochem. Soc.
,
145
(
5
), pp.
1527
1536
.
38.
Kondoh
,
J.
,
Kikuchi
,
S.
,
Tomii
,
Y.
, and
Ito
,
Y.
,
1998
, “
Effect of Aging on Yttria-Stabilized Zirconia: II. A Study of Effects of the Microstructure on Conductivity
,”
J. Electrochem. Soc.
,
145
(
5
), pp.
1536
1550
.
39.
Kondoh
,
J.
,
Kikuchi
,
S.
,
Tomii
,
Y.
, and
Ito
,
Y.
,
1998
, “
Effect of Aging on Yttria-Stabilized Zirconia: III. A Study of the Effect of Local Structure on Conductivity
,”
J. Electrochem. Soc.
,
145
(
5
), pp.
1550
1560
.
40.
Kondoh
,
J.
,
Shiota
,
H.
,
Kikuchi
,
S.
,
Tomii
,
Y.
,
Ito
,
Y.
, and
Kawachi
,
K.
,
2002
, “
Changes in Aging Behavior and Defect Structure of Y2O3 Fully Stabilized ZrO2 by In2O3 Doping
,”
J. Electrochem. Soc.
,
149
(
8
), pp.
J59
J72
.
41.
Nomura
,
K.
,
Mizutani
,
Y.
,
Kawai
,
M.
,
Nakamura
,
Y.
, and
Yamamoto
,
O.
,
2000
, “
Aging and Raman Scattering Study of Scandia and Yttria Doped Zirconia
,”
Solid State Ionics
,
132
(3–4), pp.
235
239
.
42.
Hattori
,
M.
,
Takeda
,
Y.
,
Lee
,
J. H.
,
Ohara
,
S.
,
Mukai
,
K.
, and
Fukui
,
T.
,
2004
, “
Effect of Aging on Conductivity of Yttria Stabilized Zirconia
,”
J. Power Sources
,
126
(1–2), pp.
23
27
.
43.
Takahashi
,
S.
,
Sakaki
,
Y.
, and
Nakanishi
,
A.
,
2004
, “
Effect of Annealing on the Electrical Conductivity of the Y2O3-ZrO2 System
,”
J. Power Sources
,
131
(1–2), pp.
247
250
.
44.
Butz
,
B.
,
Kruse
,
P.
,
Störmer
,
H.
,
Gerthsen
,
D.
,
Müller
,
A.
,
Weber
,
A.
, and
Ivers-Tiffée
,
E.
,
2006
, “
Correlation Between Microstructure and Degradation in Conductivity for Cubic Y2O3-Doped ZrO2
,”
Solid State Ionics
,
177
(37–38), pp.
3275
3284
.
45.
Terner
,
M. R.
,
Schuler
,
J. A.
,
Mai
,
A.
, and
Penner
,
D.
,
2014
, “
On the Conductivity Degradation and Phase Stability of Solid Oxide Fuel Cell (SOFC) Zirconia Electrolytes Analysed Via XRD
,”
Solid State Ionics
,
263
, pp.
180
189
.
46.
Van Herle
,
J.
, and
Vasquez
,
R.
,
2004
, “
Conductivity of Mn and Ni-Doped Stabilized Zirconia Electrolyte
,”
J. Eur. Ceram. Soc.
,
24
(
6
), pp.
1177
1180
.
47.
Kwon
,
O. H.
, and
Choi
,
G. M.
,
2006
, “
Electrical Conductivity of Thick Film YSZ
,”
Solid State Ionics
,
177
(35–36), pp.
3057
3062
.
48.
Linderoth
,
S.
,
Bonanos
,
N.
,
Jensen
,
K. V.
, and
Bilde-Sørensen
,
J. B.
,
2001
, “
Effect of NiO-to-Ni Transformation of Conductivity and Structure of Yttria-Stabilized ZrO2
,”
J. Am. Ceram. Soc.
,
84
(
11
), pp.
2652
2656
.
49.
Kondo
,
H.
,
Sekino
,
T.
,
Kusunose
,
T.
,
Nakayama
,
T.
,
Yamamoto
,
Y.
, and
Niihara
,
K.
,
2003
, “
Phase Stability and Electrical Property of NiO-Doped Yttria-Stabilized Zirconia
,”
Mater. Lett.
,
57
(9–10), pp.
1624
1628
.
50.
Coors
,
W. G.
,
O'Brien
,
J. R.
, and
White
,
J. T.
,
2009
, “
Conductivity Degradation of NiO-Containing 8YSZ and 10YSZ Electrolyte During Reduction
,”
Solid State Ionics
,
180
(2–3), pp.
246
251
.
51.
Butz
,
B.
,
Lefarth
,
A.
,
Störmer
,
H.
,
Utz
,
A.
,
Ivers-Tiffée
,
E.
, and
Gerthsen
,
D.
,
2012
, “
Accelerated Degradation of 8.5 mol% Y2O3-Doped Zirconia by Dissolved Ni
,”
Solid State Ionics
,
214
, pp.
37
44
.
52.
Kishimoto
,
H.
,
Shimonosono
,
T.
,
Yamaji
,
K.
,
Brito
,
M. E.
,
Horita
,
T.
, and
Yokokawa
,
H.
,
2011
, “
Phase Transformation of Stabilized Zirconia on SOFC Stacks
,”
ECS Trans.
,
35
(
1
), pp.
1171
1176
.
53.
Shimonosono
,
T.
,
Kishimoto
,
H.
,
Yamaji
,
K.
,
Brito
,
M. E.
,
Horita
,
T.
, and
Yokokawa
,
H.
,
2012
, “
Phase Transformation Related Electrical Conductivity Degradation of NiO Doped YSZ
,”
Solid State Ionics
,
225
, pp.
69
72
.
54.
Kishimoto
,
H.
,
Yashiro
,
K.
,
Shimonosono
,
T.
,
Brito
,
M. E.
,
Yamaji
,
K.
,
Horita
,
T.
,
Yokokawa
,
H.
, and
Mi-Zusaki
,
J.
,
2012
, “
In Situ Analysis on the Electrical Conductivity Degradation of NiO Doped Yttria Stabilized Zirconia Electrolyte by Micro-Raman Spectroscopy
,”
Electrochem. Acta
,
82
, pp.
263
267
.
55.
Shimonosono
,
T.
,
Kishimoto
,
H.
,
Nishi
,
M.
,
Brito
,
M. E.
,
Yamaji
,
K.
,
Yokokawa
,
H.
, and
Horita
,
T.
,
2013
, “
Cubic—Tetragonal Phase Transformation of YSZ Electrolyte in SOFCs
,”
ECS Trans.
,
57
(
1
), pp.
627
634
.
56.
Yokokawa
,
H.
,
Sakai
,
N.
,
Horita
,
T.
,
Yamaji
,
K.
, and
Brito
,
M. E.
,
2005
, “
Solid Oxide Electrolytes for High Temperature Fuel Cells
,”
Electrochemistry
,
73
(1), pp.
20
30
.
57.
Yokokawa
,
H.
,
Sakai
,
N.
,
Horita
,
T.
,
Yamaji
,
K.
, and
Brito
,
M. E.
,
2005
, “
Electrolytes for Solid Oxide Fuel Cells
,”
Mater. Bull.
,
30
(
8
), pp.
591
595
.
58.
Shimonosono
,
T.
,
Kishimoto
,
H.
,
Yamaji
,
K.
,
Brito
,
M. E.
,
Horita
,
T.
, and
Yokokawa
,
H.
,
2012
, “
Electronic Conductivity of Ni-Doped Yttria-Stabilized Zirconia
,”
Solid State Ionics
,
225
, pp.
61
64
.
59.
Shimazu
,
M.
,
Isobe
,
T.
,
Ando
,
S.
,
Hiwatashi
,
K.
,
Ueno
,
A.
,
Yamaji
,
K.
,
Kishimoto
,
H.
,
Yokokawa
,
H.
,
Nakajima
,
A.
, and
Okada
,
K.
,
2011
, “
Stability of Sc2O3 and CeO2 Co-Doped ZrO2 Electrolyte During the Operation of Solid Oxide Fuel Cells
,”
Solid State Ionics
,
182
(
1
), pp.
120
126
.
60.
Shimazu
,
M.
,
Yamaji
,
K.
,
Isobe
,
T.
,
Ueno
,
A.
,
Kishimoto
,
H.
,
Katsumata
,
K.
,
Yokokawa
,
H.
, and
Okada
,
K.
,
2011
, “
Stability of Sc2O3 and CeO2 Co-Doped ZrO2 Electrolyte During the Operation of Solid Oxide Fuel Cells—Part II: The Influences of Mn, Al and Si
,”
Solid State Ionics
,
204–205
, pp.
120
128
.
61.
Shimazu
,
M.
,
Yamaji
,
K.
,
Kishimoto
,
H.
,
Ueno
,
A.
,
Isobe
,
T.
,
Ka-tsumata
,
K.-I.
,
Yokokawa
,
H.
, and
Okada
,
K.
,
2012
, “
Stability of Sc2O3 and CeO2 Co-Doped ZrO2 Electrolyte During the Operation of Solid Oxide Fuel Cells—Part III: Detailed Mechanism of the Decomposition
,”
Solid State Ionics
,
224
, pp.
6
14
.
62.
Yamaji
,
K.
,
Kishimoto
,
H.
,
Brito
,
M. E.
,
Horita
,
T.
,
Yokokawa
,
H.
,
Shimazu
,
M.
,
Yashiro
,
K.
,
Kawada
,
T.
, and
Mizusaki
,
J.
,
2013
, “
Effect of Mn-Doping on Stability of Scandia Stabilized Zirconia Electrolyte Under Dual Atmosphere of Solid Oxide Fuel Cells
,”
Solid State Ionics
,
247–248
, pp.
102
107
.
63.
Malzbender
,
J.
,
Batfalsky
,
P. B.
,
Vassen
,
R.
,
Shemet
,
V.
, and
Tietz
,
F.
,
2012
, “
Component Interactions After Long-Term Operation of an SOFC Stack With LSM Cathode
,”
J. Power Sources
,
201
, pp.
196
203
.
64.
Menzler
,
N. H.
,
Batfalsky
,
P.
,
Beez
,
A.
,
Blum
,
L.
,
Gross-Barsnick
,
S.-M.
,
Niewolak
,
L.
,
Quadak-Kers
,
W. J.
, and
Vassen
,
R.
,
2016
, “
Post-Test Analysis of a Solid Oxide Fuel Cell Stack Operated for 35,000 h
,”
12th European SOFC and SOE Forum
, Lucerne, Switzerland, July 5–8, p.
A1101
.
65.
Yokokawa
,
H.
,
2003
, “
Understanding Materials Compatibility
,”
Annu. Rev. Mater. Res.
,
33
(
1
), pp.
581
610
.
66.
Choudhury
,
N. S.
, and
Patterson
,
J. W.
,
1971
, “
Performance Characteristics of Solid Electrolytes Under Steady State Conditions
,”
J. Electrochem. Soc.
,
118
(
9
), pp.
1398
1403
.
67.
Kawada
,
T.
, and
Yokokawa
,
H.
,
1997
, “
Materials and Characterization of Solid Oxide Fuel Cell
,”
Key Eng. Mater.
,
125–126
, pp.
187
248
.
68.
Wagner
,
C.
,
1957
, “Galvanic Cells With Solid Electrolytes Involving Ionic and Electronic Conduction,” International Committee of Electrochemical Thermodynamics and Kinetics, Proceedings of the Seventh Meeting, Vol.
1955
, Butterworths, London, pp. 361–377.
69.
Lee
,
D.-K.
, and
Yoo
,
H.-I.
,
2006
, “
Electron-Ion Interference and Onsager Reciprocity in Metal Ionic-Electronic Transport in TiO2
,”
Phys. Rev. Lett.
,
97
, p.
255901
.
70.
Chatzichristodoulou
,
C.
,
Park
,
W.-S.
,
Kim
,
H.-S.
,
Hendriksen
,
P. V.
, and
Yoo
,
H.-I.
,
2010
, “
Experimental Determination of the Onsager Coefficients of Transport for Ce0.8Pr.2O2-δ
,”
Phys. Chem. Chem. Phys.
,
12
(
33
), pp.
9637
9649
.
71.
Park
,
J. H.
, and
Blumenthal
,
R. N.
,
1989
, “
Electronic Transport in 8 Mole Percent Y2O3-ZrO2
,”
J. Electrochem. Soc.
,
136
(
10
), pp.
2867
2876
.
72.
Weppner
,
W.
,
1977
, “
Electronic Transport Properties and Electrically Induced p-n Junction in ZrO2 + 10 m/o Y2O3
,”
J. Solid State Chem.
,
20
(
3
), pp.
305
314
.
73.
Yashima
,
M.
,
Kahihana
,
M.
, and
Yoshimura
,
M.
,
1996
, “
Metastable-Stable Phase Diagrams in the Zirconia-Containing Systems Utilized in Solid-Oxide Fuel Cell Application
,”
Solid State Ionics
,
86–88
(Pt. 2), p.
1131
.
74.
Hillert
,
M.
, and
Sakuma
,
T.
,
1991
, “
Thermodynamic Modeling of the c → t Transformation in ZrO2 Alloys
,”
Acta Metall. Mater.
,
39
(
6
), pp.
1111
1115
.
75.
Shibata
,
N.
,
Katamura
,
J.
,
Kuwabara
,
A.
,
Ikuhara
,
Y.
, and
Sakuma
,
T.
,
2001
, “
The Instability and Resulting Phase Transition of Cubic Zirconia
,”
Mater. Sci. Eng. A
,
312
(1–2), pp.
90
98
.
76.
Lughi
,
V.
, and
Clarke
,
D. R.
,
2005
, “
High Temperature Aging of YSZ Coatings and Subsequent Transformation at Low Temperature
,”
Surf. Coat. Technol.
,
200
(5–6), pp.
1287
1291
.
77.
Krogstad
,
J. A.
,
Krämer
,
S.
,
Lipkin
,
D. M.
,
Johnson
,
C. A.
,
Mitchell
,
D. R. G.
,
Cairney
,
J. M.
, and
Levi
,
C. G.
,
2011
, “
Phase Stability of t′-Zirconia-Based Thermal Barrier Coatings: Mechanistic Insights
,”
J. Am. Ceram. Soc.
,
94
(
S1
), pp.
S168
S177
.
78.
Limarga
,
A. M.
,
Iveland
,
J.
,
Gentleman
,
M.
,
Lipkin
,
D. M.
, and
Clarke
,
D. R.
,
2011
, “
The Use of Larson-Miller Parameters to Monitor the Evolution of Raman Lines of Tetragonal Zirconia With High Temperature Aging
,”
Acta Mater.
,
59
(
3
), pp.
1162
1167
.
79.
Lipkin
,
D. M.
,
Krogstad
,
J. A.
,
Gao
,
Y.
,
Johnson
,
C. A.
,
Nelson
,
W. A.
, and
Levi
,
C. G.
,
2013
, “
Phase Evolution Upon Aging of Air-Plasma Sprayed t′-Zirconia Coatings: I—Synchrotron X-Ray Diffraction
,”
J. Am. Ceram. Soc.
,
96
(
1
), pp.
290
298
.
80.
Krogstad
,
J. A.
,
Leckie
,
R. M.
,
Krämer
,
S.
,
Cairney
,
J. M.
,
Lipkin
,
D. M.
,
Johnson
,
C. A.
, and
Levi
,
C. G.
,
2013
, “
Phase Evolution Upon Aging of Air Plasma Sprayed t′-Zirconia Coatings: II—Microstructure Evolution
,”
J. Am. Ceram. Soc.
,
96
(
1
), pp.
299
307
.
81.
Hillert
,
M.
,
1991
, “
Thermodynamic Model of the Cubic → Tetragonal Transition in Nonstoichiometric Zirconia
,”
J. Am. Ceram. Soc.
,
74
(
8
), pp.
2005
2006
.
82.
Katsumura
,
J.
, and
Sakuma
,
T.
,
1997
, “
Thermodynamic Analysis of the Cubic-Tetragonal Phase Equilibria in the System ZrO2-YO1.5
,”
J. Am. Ceram. Soc.
,
80
(
10
), pp.
2685
2688
.
83.
Kawada
,
T.
,
Sakai
,
N.
,
Yokokawa
,
H.
, and
Dokiya
,
M.
,
1992
, “
Electrical Properties of Transition Metal Doped YSZ
,”
Solid State Ionics
,
53–56
(Pt. 1), pp.
418
425
.
84.
Shimonosono
,
T.
,
2013
, “
Ionic Conductivity of NiO-Doped YSZ Before and After the Transformation at 900 °C With H2/1% H2O Atmosphere
,” unpublished.
85.
Kilo
,
M.
,
Borchardt
,
G.
,
Lesage
,
B.
,
Weber
,
S.
,
Scherrer
,
S.
,
Martin
,
M.
, and
Schroeder
,
M.
,
2001
, “
Zr and Stabilizer Tracer Diffusion in Calcia- and Yttria-Stabilized Zirconia
,” Solid Oxide Fuel Cells VII (SOFC VII): Proceedings of the International Symposium, Vol. 2001–16, Electrochemical Society, Pennington, NJ, pp.
275
283
.
86.
Kilo
,
M.
,
Taylor
,
M. A.
,
Argirusis
,
C.
,
Borchardt
,
G.
,
Lesage
,
B.
,
Weber
,
S.
,
Scherrer
,
S.
,
Scherrer
,
H.
,
Schroeder
,
M.
, and
Martin
,
M.
,
2003
, “
Cation Self-Diffusion of 44Ca, 88Y, and 96Zr in Single-Crystalline Calcia- and Yttria-Doped Zirconia
,”
J. Appl. Phys.
,
94
(
12
), p.
7547
.
87.
Kilo
,
M.
,
Borchardt
,
G.
,
Lesage
,
B.
,
KaıüTasov
,
O.
,
Weber
,
S.
, and
Scherrer
,
S.
,
2000
, “
Cation Transport in Yttria Stabilized Cubic Zirconia: 96Zr Tracer Diffusion in (ZrxY1–x)O2–x/2 Single Crystals With 0.15⩽×⩽0.48
,”
J. Eur. Ceram. Soc.
,
20
(
12
), pp.
2069
2077
.
88.
Argirusis
,
C.
,
Taylor
,
M. A.
,
Kilo
,
M.
,
Borchardt
,
G.
,
Jomard
,
F.
,
Lesage
,
B.
, and
Kaïtasov
,
O.
,
2004
, “
SIMS Study of Transition Metal Transport in Single Crystalline Yttria Stabilized Zirconia
,”
Phys. Chem. Chem. Phys.
,
6
(
13
), pp.
3650
3653
.
89.
Kishimoto
,
H.
,
Brito
,
M. E.
,
Sakai
,
N.
,
Yamaji
,
K.
,
Horita
,
T.
,
Xiong
,
Y.-P.
, and
Yokokawa
,
H.
,
2008
, “
Difference in Cation Diffusion Between ScSZ and YSZ Electrolytes/LSM Cathode Interfaces
,”
75th Meeting of Japanese Electrochemical Society
, Yamanashi, Japan, Mar. 29–31, Paper No. 2B01.
90.
Morrissey
,
A.
,
O'Brien
,
J. R.
, and
Reimanis
,
I. E.
,
2016
, “
Microstructure Evolution During Internal Reduction of Polycrystalline Nickel-Doped Yttria-Stabilized Zirconia
,”
Acta Mater.
,
105
, pp.
84
93
.
91.
Janek
,
J.
, and
Korte
,
C.
,
1999
, “
Electrochemical Blackening of Yttria-Stabilized Zirconia—Morphological Instability of the Moving Reduction Front
,”
Solid State Ionics
,
116
(3–4), pp.
181
195
.
92.
Wright
,
D. A.
,
Thorp
,
J. S.
,
Aypar
,
A.
, and
Buckley
,
H. P.
,
1973
, “
Optical Absorption in Current-Blackened Yttria Stabilized Zirconia
,”
J. Mater. Sci.
,
8
(
6
), pp.
876
882
.
93.
Savoini
,
B.
,
Ballesteros
,
C.
,
Santiuste
,
J. E. M.
, and
Gonzalez
,
R.
,
1998
, “
Thermochemical Reduction of Yttria-Stabilized-Zirconia Crystals: Optical and Electron Microscopy
,”
Phys. Rev. B
,
57
(
21
), pp.
13439
13447
.
You do not currently have access to this content.