Thermal management of Li-ion batteries utilizing internal cooling method is the promising way to keep these batteries in an appropriate temperature range and to improve the temperature uniformity. In this study, three-dimensional transient thermal analysis was carried out to investigate the effects of size of embedded microchannels inside the electrodes on the thermal and electrical performances of a Li-ion battery cell. Based on the ratio of the width of microchannels to the width of the cell, different cases were designed; from the ratio of 0 (without any microchannels) to the ratio of 0.5. The results showed that increasing the size of the microchannels from the width ratio of 0 to the width ratio of 0.5 can reduce the maximum temperature inside the battery cell up to 11.22 K; it can also improve the temperature uniformity inside the battery cell. Increasing the electrolyte flow inlet temperature from 288.15 K to 308.15 K can enhance the temperature uniformity inside the battery and the cell voltage up to 33.20% and 2.79%, respectively. Increasing the electrolyte flow inlet velocity from 1 cm/s to 10 cm/s can reduce the maximum temperature inside the battery cell up to 8.09 K.

References

References
1.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2015
, “
Thermal Management Optimization of an Air-Cooled Li-Ion Battery Module Using Pin-Fin Heat Sinks for Hybrid Electric Vehicles
,”
J. Power Sources
,
273
, pp.
431
439
.
2.
Yang
,
X.-H.
,
Tan
,
S.-C.
, and
Liu
,
J.
,
2016
, “
Thermal Management of Li-Ion Battery With Liquid Metal
,”
Energy Convers. Manage.
,
117
, pp.
577
585
.
3.
Giuliano
,
M. R.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
,
2012
, “
Experimental Study of an Air-Cooled Thermal Management System for High Capacity Lithium–Titanate Batteries
,”
J. Power Sources
,
216
, pp.
345
352
.
4.
Mohammadian
,
S. K.
,
Rassoulinejad-Mousavi
,
S. M.
, and
Zhang
,
Y.
,
2015
, “
Thermal Management Improvement of an Air-Cooled High-Power Lithium-ion Battery by Embedding Metal Foam
,”
J. Power Sources
,
296
, pp.
305
313
.
5.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2016
, “
Temperature Uniformity Improvement of an Air-Cooled High-Power Lithium-Ion Battery Using Metal and Nonmetal Foams
,”
ASME J. Heat Transfer
,
138
(
11
), p.
114502
.
6.
Alrashdan
,
A.
,
Mayyas
,
A. T.
, and
Al-Hallaj
,
S.
,
2010
, “
Thermo-Mechanical Behaviors of the Expanded Graphite-Phase Change Material Matrix Used for Thermal Management of Li-Ion Battery Packs
,”
J. Mater. Process. Technol.
,
210
(
1
), pp.
174
179
.
7.
Goli
,
P.
,
Legedza
,
S.
,
Dhar
,
A.
,
Salgado
,
R.
,
Renteria
,
J.
, and
Balandin
,
A. A.
,
2014
, “
Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries
,”
J. Power Sources
,
248
, pp.
37
43
.
8.
Wang
,
Z.
,
Zhang
,
Z.
,
Jia
,
L.
, and
Yang
,
L.
,
2015
, “
Paraffin and Paraffin/Aluminum Foam Composite Phase Change Material Heat Storage Experimental Study Based on Thermal Management of Li-Ion Battery
,”
Appl. Therm. Eng.
,
78
, pp.
428
436
.
9.
Samimi
,
F.
,
Babapoor
,
A.
,
Azizi
,
M.
, and
Karimi
,
G.
,
2016
, “
Thermal Management Analysis of a Li-Ion Battery Cell Using Phase Change Material Loaded With Carbon Fibers
,”
Energy
,
96
, pp.
355
371
.
10.
Mohammadian
,
S. K.
,
He
,
Y.-L.
, and
Zhang
,
Y.
,
2015
, “
Internal Cooling of a Lithium-ion Battery Using Electrolyte as Coolant Through Microchannels Embedded Inside the Electrodes
,”
J. Power Sources
,
293
, pp.
458
466
.
11.
Kwon
,
K. H.
,
Shin
,
C. B.
,
Kang
,
T. H.
, and
Kim
,
C.-S.
,
2006
, “
A Two-Dimensional Modeling of a Lithium-Polymer Battery
,”
J. Power Sources
,
163
(
1
), pp.
151
157
.
12.
Kim
,
U. S.
,
Yi
,
J.
,
Shin
,
C. B.
,
Han
,
T.
, and
Park
,
S.
,
2011
, “
Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature
,”
J. Electrochem. Soc.
,
158
(
5
), pp.
A611
A618
.
13.
Cheng
,
L.
,
Ke
,
C.
,
Fengchun
,
S.
,
Peng
,
T.
, and
Hongwei
,
Z.
,
2009
, “
Research on Thermophysical Properties Identification and Thermal Analysis of EV Li-ion Battery
,”
Vehicle Power and Propulsion Conference
, IEEE, Dearborn, MI, Sept. 7–11, pp.
1643
1648
.
You do not currently have access to this content.