In this paper, we present experimental studies of electrochemical performance of an all-vanadium redox flow battery cell employing an active area of 103 cm2, activated carbon felt, and a novel flow field, which ensures good electrolyte circulation at low pressure drops. Extended testing over 151 consecutive charge/discharge cycles has shown steady performance with an energy efficiency of 84% and capacity fade of only 0.26% per cycle. Peak power density of 193 mW cm−2 has been obtained at an electrolyte circulation rate of 114 ml min−1, which corresponds to stoichiometric factor of 4.6. The present configuration of the cell shows 20% improved in peak power and 30% reduction in pressure drop when compared to a similar cell with a different electrode and a serpentine flow field.

References

References
1.
Weber
,
A. Z.
,
Mench
,
M. M.
,
Meyers
,
J. P.
,
Ross
,
P. N.
,
Gostick
,
J. T.
, and
Liu
,
Q.
,
2011
, “
Redox Flow Batteries: Review A
,”
J. Appl. Electrochem.
,
41
(
10
), pp.
1137
1164
.
2.
Wang
,
W.
,
Luo
,
Q.
,
Li
,
B.
,
Wei
,
X.
,
Li
,
L.
, and
Yang
,
Z.
,
2013
, “
Recent Progress in Redox Flow Battery Research and Development
,”
Adv. Funct. Mater.
,
23
(
8
) pp.
970
986
.
3.
Alotto
,
P.
,
Guarnieri
,
M.
, and
Moro
,
F.
,
2014
, “
Redox Flow Batteries for the Storage of Renewable Energy: Review A
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
325
335
.
4.
Wang
,
W.
,
Nie
,
Z.
,
Chem
,
B.
,
Chem
,
F.
,
Luo
,
Q.
,
Wei
,
X.
,
Guang Xia
,
G.
,
Skyllas-Kazacos
,
M.
,
Li
,
L.
, and
Yang
,
Z.
,
2012
, “
A New Fe/V Redox Flow Battery Using a Sulfuric/Chloric Mixed-Acid Supporting Electrolyte
,”
Adv. Energy Mater.
,
2
(
4
), pp.
487
493
.
5.
Chang
,
F.
,
Hu
,
C.
,
Liu
,
X.
,
Liu
,
L.
, and
Zhang
,
J.
,
2012
, “
Coulter Dispersant as Positive Electrolyte Additive for the Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
60
, pp.
334
338
.
6.
Liang
,
X.
,
Peng
,
S.
,
Lei
,
Y.
,
Gao
,
C.
,
Wang
,
N.
,
Liu
,
S.
, and
Fang
,
D.
,
2013
, “
Effect of L-Glutamic Acid on the Positive Electrolyte for All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
95
, pp.
80
86
.
7.
He
,
Z.
,
Liu
,
J.
,
Han
,
H.
,
Chem
,
Y.
,
Zhou
,
Z.
,
Zheng
,
S.
,
Lu
,
W.
,
Zhen
,
S.
,
Lu
,
W.
,
Liu
,
S.
, and
He
,
Z.
,
2013
, “
Effect of Organic Additive Containing NH2 and SO3H on Electrochemical Properties of Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
106
, pp.
556
562
.
8.
Lei
,
Y.
,
Liu
,
S.
,
Gao
,
C.
,
Liang
,
X.
,
He
,
Y.
, and
Deng
,
Z.
,
2013
, “
Effect of Amino Acid Additives on the Positive Electrolyte of Vanadium Redox Flow Battery
,”
J. Electrochem. Society
,
160
(
4
), pp.
A722
A727
.
9.
Park
,
S. K.
,
Shim
,
J.
,
Yang
,
J. H.
,
Jin
,
C.-S.
,
Lee
,
B. S.
,
Lee
,
Y.-S.
,
Shin
,
K. H.
, and
Jeon
,
J. D.
,
2014
, “
Effect of Inorganic Additive Sodium Pyrophosphate Tetrabasic on Positive Electrolytes for a Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
121
, pp.
321
327
.
10.
Han
,
H.
,
He
,
Z.
,
Liu
,
J.
,
Chen
,
Y.
, and
Liu
,
S.
,
2015
, “
Effects of Pyridine Carboxylic Acid on the Positive Electrolyte for Vanadium Redox Flow Battery
,”
Ionics
,
21
(1), pp.
167
174
.
11.
Liu
,
J.
,
Liu
,
S.
,
He
,
Z.
,
Han
,
H.
, and
Chen
,
Y.
,
2014
, “
Effect of Organic Additive With Oxygen-and Nitrogen-Containing Functional Groups on the Negative Electrolyte of Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
130
, pp.
314
321
.
12.
Shen
,
J.
,
Liu
,
S.
,
He
,
Z.
, and
Shi
,
L.
,
2015
, “
Influence of Antimony Ions in Negative Electrolyte on the Electrochemical Performance of Vanadium Redox Flow Batteries
,”
Electrochim. Acta
,
151
, pp.
297
305
.
13.
Wei
,
X.
,
Nie
,
Z.
,
Luo
,
Q.
,
Li
,
B.
,
Sprenkle
,
V.
, and
Wang
,
W.
,
2013
, “
Polyvinyl Chloride/Silica Nanoporous Composite Separator for All-Vanadium Redox Flow Battery Applications
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
A1215
A1218
.
14.
Zhou
,
X. L.
,
Zhao
,
T. S.
,
An
,
L.
,
Wei
,
L.
, and
Zhang
,
C.
,
2015
, “
The Use of Polybenzimidazole Membranes in Vanadium Redox Flow Batteries Leading to Increased Coulombic Efficiency and Cyclic Performance
,”
Electrochim. Acta
,
152
, pp.
492
498
.
15.
Luo
,
T.
,
David
,
O.
,
Gendel
,
Y.
, and
Wessling
,
M.
,
2016
, “
Porous Poly (Benzimidazole) Membrane for All Vanadium Redox Flow Battery
,”
J. Power Sources
,
312
, pp.
45
54
.
16.
Roe
,
S.
,
Menictas
,
C.
, and
Skyllas-Kazacos
,
M.
,
2016
, “
A High Energy Density Vanadium Redox Flow Battery With 3M Vanadium Electrolyte
,”
J. Electrochem. Soc.
,
163
(
1
), pp.
A5023
A5028
.
17.
Aaron
,
D. S.
,
Liu
,
Q.
,
Tang
,
Z.
,
Grim
,
G. M.
,
Papandrew
,
A. B.
,
Turhan
,
A.
,
Zawodzinski
,
T. A.
, and
Mench
,
M. M.
,
2012
, “
Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture
,”
J. Power Sources
,
206
, pp.
450
453
.
18.
Zeng
,
Y. K.
,
Zhao
,
T. S.
,
An
,
L.
,
Zhou
,
X. L.
, and
Wei
,
L.
,
2015
, “
A Comparative Study of All-Vanadium and Iron-Chromium Redox Flow Batteries for Large-Scale Energy Storage
,”
J. Power Sources
,
300
, pp.
438
443
.
19.
Zhu
,
S. Q.
,
Chen
,
J. Q.
,
Wang
,
Q.
, and
Wang
,
B. G.
,
2008
, “
Influence of Flow Channel Structure and Electrolyte Flow State on the Performance of VRB
,”
Battery
,
38
, pp.
285
287
.
20.
Chen
,
J. Q.
,
Wang
,
B. G.
, and
Lv
,
H. L.
,
2011
, “
Numerical Simulation and Experiment on the Electrolyte Flow Distribution for All-Vanadium Redox Flow Battery
,”
Adv. Mater. Res.
,
238
, pp.
604
607
.
21.
Tsushima
,
S.
,
Sasaki
,
S.
, and
Hirai
,
S.
,
2013
, “
Influence of Cell Geometry and Operating Parameters on Performance of a Redox Flow Battery With Serpentine and Interdigitated Flow Fields
,”
224th ECS Meeting
, San Francisco, CA, Oct. 24–Nov. 1, Paper No.
1664
.
22.
Jyothi Latha
,
T.
, and
Jayanti
,
S.
,
2014
, “
Hydrodynamic Analysis of Flow Fields for Redox Flow Battery Applications
,”
J. Appl. Electrochem.
,
44
(
9
), pp.
995
1006
.
23.
Kumar
,
S.
, and
Jayanti
,
S.
,
2016
, “
Effect of Low Field on the Performance of an All-Vanadium Redox Flow Battery
,”
J. Power Sources
,
307
, pp.
782
787
.
24.
Shyam Prasad
,
K. B.
, and
Jayanti
,
S.
,
2008
, “
Effect of Channel-to-Channel Cross-Flow on Local Flooding in Serpentine Flow-Fields
,”
J. Power Sources
,
180
(
1
), pp.
227
231
.
25.
Suresh
,
P. V.
,
Jayanti
,
S.
,
Deshpande
,
A. P.
, and
Haridoss
,
P.
,
2011
, “
An Improved Serpentine Flow Field With Enhanced Cross-Flow for Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
36
(
10
), pp.
6067
6072
.
26.
Gandomi
,
Y. A.
,
Aaron
,
D. S.
, and
Mench
,
M. M.
,
2016
, “
Coupled Membrane Transport Parameter for Ionic Species in All-Vanadium Redox Flow Battery
,”
Electrochem. Acta
,
218
, pp.
174
190
.
You do not currently have access to this content.