Localized temperature gradients in a polymer electrolyte fuel cell (PEFC) are known to decrease the durability of the polymer membrane. The most important factor in controlling these temperature gradients is the thermal contact resistance at the interface of the gas diffusion layer (GDL) and the bipolar plate. Here, we present thermal contact resistance measurements of carbon paper and carbon cloth GDLs over a pressure range of 0.7–14.5 MPa. Contact resistances are highly dependent upon the clamping pressure applied to a fuel cell, and in the present work, contact resistances vary from 3.5 × 10−4 to 2.0 × 10−5 m2 K/W, decreasing nonlinearly over the pressure range for each material tested. The contact resistances of carbon cloth GDLs are two to four times higher than contact resistances of carbon paper GDLs throughout the range of pressures tested. The data presented here also show that the thermal resistance of the sample is negligible in comparison to the thermal contact resistance. Controlling temperature gradients in a fuel cell is desirable, and the measurements presented here can be used to more accurately predict temperature distribution in a polymer electrolyte fuel cell.

References

References
1.
Bapat
,
C. J.
, and
Thynell
,
S. T.
,
2007
, “
Anisotropic Heat Conduction Effects in Proton-Exchange Membrane Fuel Cells
,”
ASME J. Heat Transfer
,
129
(
9
), pp.
1109
1118
.
2.
Zamel
,
N.
, and
Li
,
X. G.
,
2013
, “
Effective Transport Properties for Polymer Electrolyte Membrane Fuel Cells-With a Focus on the Gas Diffusion Layer
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
111
146
.
3.
Sethuraman
,
V. A.
,
Weidner
,
J. W.
,
Haug
,
A. T.
, and
Protsailo
,
L. V.
,
2008
, “
Durability of Perfluorosulfonic Acid and Hydrocarbon Membranes: Effect of Humidity and Temperature
,”
J. Electrochem. Soc.
,
155
(
2
), pp.
B119
B124
.
4.
Paquin
,
M.
, and
Frechette
,
L. G.
,
2008
, “
Understanding Cathode Flooding and Dry-Out for Water Management in Air Breathing PEM Fuel Cells
,”
J. Power Sources
,
180
(
1
), pp.
440
451
.
5.
Ju
,
H.
,
2009
, “
Investigation of the Effects of the Anisotropy of Gas-Diffusion Layers on Heat and Water Transport in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
191
(
2
), pp.
259
268
.
6.
Borup
,
R.
,
Meyers
,
J.
,
Pivovar
,
B.
,
Kim
,
Y. S.
,
Mukundan
,
R.
,
Garland
,
N.
,
Myers
,
D.
,
Wilson
,
M.
,
Garzon
,
F.
,
Wood
,
D.
,
Zelenay
,
P.
,
More
,
K.
,
Stroh
,
K.
,
Zawodzinski
,
T.
,
Boncella
,
J.
,
McGrath
,
J. E.
,
Inaba
,
M.
,
Miyatake
,
K.
,
Hori
,
M.
,
Ota
,
K.
,
Ogumi
,
Z.
,
Miyata
,
S.
,
Nishikata
,
A.
,
Siroma
,
Z.
,
Uchimoto
,
Y.
,
Yasuda
,
K.
,
Kimijima
,
K. I.
, and
Iwashita
,
N.
,
2007
, “
Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
,”
Chem. Rev.
,
107
(
10
), pp.
3904
3951
.
7.
Wu
,
J. F.
,
Yuan
,
X. Z.
,
Martin
,
J. J.
,
Wang
,
H. J.
,
Zhang
,
J. J.
,
Shen
,
J.
,
Wu
,
S. H.
, and
Merida
,
W.
,
2008
, “
A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies
,”
J. Power Sources
,
184
(
1
), pp.
104
119
.
8.
Ma
,
C. S.
,
Zhang
,
L.
,
Mukerjee
,
S.
,
Ofer
,
D.
, and
Nair
,
B. D.
,
2003
, “
An Investigation of Proton Conduction in Select PEM's and Reaction Layer Interfaces-Designed for Elevated Temperature Operation
,”
J. Membr. Sci.
,
219
(
1–2
), pp.
123
136
.
9.
Yang
,
C.
,
Srinivasan
,
S.
,
Bocarsly
,
A. B.
,
Tulyani
,
S.
, and
Benziger
,
J. B.
,
2004
, “
A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zirconium Phosphate/Nafion Composite Membranes
,”
J. Membr. Sci.
,
237
(
1–2
), pp.
145
161
.
10.
Lin
,
R.
,
Xiong
,
F.
,
Tang
,
W. C.
,
Techer
,
L.
,
Zhang
,
J. M.
, and
Ma
,
J. X.
,
2014
, “
Investigation of Dynamic Driving Cycle Effect on the Degradation of Proton Exchange Membrane Fuel Cell by Segmented Cell Technology
,”
J. Power Sources
,
260
, pp.
150
158
.
11.
Fazeli
,
M.
,
Hinebaugh
,
J.
, and
Bazylak
,
A.
,
2015
, “
Investigating Inlet Condition Effects on PEMFC GDL Liquid Water Transport Through Pore Network Modeling
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
F661
F668
.
12.
Weber
,
A. Z.
, and
Newman
,
J.
,
2006
, “
Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
153
(
12
), pp.
A2205
A2214
.
13.
Gandomi
,
Y. A.
,
Edmundson
,
M. D.
,
Busby
,
F. C.
, and
Mench
,
M. M.
,
2016
, “
Water Management in Polymer Electrolyte Fuel Cells Through Asymmetric Thermal and Mass Transport Engineering of the Micro-Porous Layers
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
F933
F944
.
14.
Lee
,
W.-K.
,
Ho
,
C.-H.
,
Van Zee
,
J. W.
, and
Murthy
,
M.
,
1999
, “
The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell
,”
J. Power Sources
,
84
(
1
), pp.
45
51
.
15.
Ge
,
J. B.
,
Higier
,
A.
, and
Liu
,
H. T.
,
2006
, “
Effect of Gas Diffusion Layer Compression on PEM Fuel Cell Performance
,”
J. Power Sources
,
159
(
2
), pp.
922
927
.
16.
Mason
,
T. J.
,
Millichamp
,
J.
,
Neville
,
T. P.
,
El-Kharouf
,
A.
,
Pollet
,
B. G.
, and
Brett
,
D. J. L.
,
2012
, “
Effect of Clamping Pressure on Ohmic Resistance and Compression of Gas Diffusion Layers for Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
219
, pp.
52
59
.
17.
Mason
,
T. J.
,
Millichamp
,
J.
,
Shearing
,
P. R.
, and
Brett
,
D. J. L.
,
2013
, “
A Study of the Effect of Compression on the Performance of Polymer Electrolyte Fuel Cells Using Electrochemical Impedance Spectroscopy and Dimensional Change Analysis
,”
Int. J. Hydrogen Energy
,
38
(
18
), pp.
7414
7422
.
18.
Zhang
,
W.
, and
Wu
,
C. W.
,
2014
, “
Effect of Clamping Load on the Performance of Proton Exchange Membrane Fuel Cell Stack and Its Optimization Design: A Review of Modeling and Experimental Research
,”
ASME J. Fuel Cell Sci. Technol.
,
11
(
2
), p. 020801.
19.
Chang
,
W. R.
,
Hwang
,
J. J.
,
Weng
,
F. B.
, and
Chan
,
S. H.
,
2007
, “
Effect of Clamping Pressure on the Performance of a PEM Fuel Cell
,”
J. Power Sources
,
166
(
1
), pp.
149
154
.
20.
Lin
,
J.-H.
,
Chen
,
W.-H.
,
Su
,
Y.-J.
, and
Ko
,
T.-H.
,
2008
, “
Effect of Gas Diffusion Layer Compression on the Performance in a Proton Exchange Membrane Fuel Cell
,”
Fuel
,
87
(
12
), pp.
2420
2424
.
21.
Khandelwal
,
M.
, and
Mench
,
M. M.
,
2006
, “
Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials
,”
J. Power Sources
,
161
(
2
), pp.
1106
1115
.
22.
Burheim
,
O. S.
,
Pharoah
,
J. G.
,
Lampert
,
H.
,
Vie
,
P. J. S.
, and
Kjelstrup
,
S.
,
2010
, “
Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
2
), p.
021013
.
23.
Sanders
,
D. J.
, and
Forsyth
,
R. C.
,
1983
, “
Measurement of Thermal Conductivity and Contact Resistance of Paper and Thin-Film Materials
,”
Rev. Sci. Instrum.
,
54
(
2
), pp.
238
244
.
24.
Nitta
,
I.
,
Himanen
,
O.
, and
Mikkola
,
M.
,
2008
, “
Thermal Conductivity and Contact Resistance of Compressed Gas Diffusion Layer of PEM Fuel Cell
,”
Fuel Cells
,
8
(
2
), pp.
111
119
.
25.
Sadeghi
,
E.
,
Djilali
,
N.
, and
Bahrami
,
M.
,
2011
, “
Effective Thermal Conductivity and Thermal Contact Resistance of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells—Part 1: Effect of Compressive Load
,”
J. Power Sources
,
196
(
1
), pp.
246
254
.
26.
Yablecki
,
J.
,
Nabovati
,
A.
, and
Bazylak
,
A.
,
2012
, “
Modeling the Effective Thermal Conductivity of an Anisotropic Gas Diffusion Layer in a Polymer Electrolyte Membrane Fuel Cell
,”
J. Electrochem. Soc.
,
159
(
6
), pp.
B647
B653
.
27.
Karimi
,
G.
,
Li
,
X.
, and
Teertstra
,
P.
,
2010
, “
Measurement of Through-Plane Effective Thermal Conductivity and Contact Resistance in PEM Fuel Cell Diffusion Media
,”
Electrochim. Acta
,
55
(
5
), pp.
1619
1625
.
28.
Unsworth
,
G.
,
Zamel
,
N.
, and
Li
,
X. G.
,
2012
, “
Through-Plane Thermal Conductivity of the Microporous Layer in a Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
6
), pp.
5161
5169
.
29.
Burheim
,
O.
,
Vie
,
P. J. S.
,
Pharoah
,
J. G.
, and
Kjelstrup
,
S.
,
2010
, “
Ex Situ Measurements of Through-Plane Thermal Conductivities in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
195
(
1
), pp.
249
256
.
30.
Zamel
,
N.
,
Li
,
X. G.
,
Becker
,
J.
, and
Wiegmann
,
A.
,
2011
, “
Effect of Liquid Water on Transport Properties of the Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
9
), pp.
5466
5478
.
31.
Marotta
,
E. E.
, and
Fletcher
,
L. S.
,
1996
, “
Thermal Contact Conductance of Selected Polymeric Materials
,”
J. Thermophys. Heat Transfer
,
10
(
2
), pp.
334
342
.
32.
Xu
,
G.
,
LaManna
,
J. M.
,
Clement
,
J. T.
, and
Mench
,
M. M.
,
2014
, “
Direct Measurement of Through-Plane Thermal Conductivity of Partially Saturated Fuel Cell Diffusion Media
,”
J. Power Sources
,
256
, pp.
212
219
.
You do not currently have access to this content.