Pr1.9A0.1NiO4 (A = Ca, Sr, Ba) are synthesized and characterized by X-ray powder diffraction (XRD), infrared spectrum (IR), and X-ray photoelectron spectroscopy (XPS). The effects of alkaline earth doping on the covalence of Pr–O and Ni–O bond, the mean valence of Ni, and the hydroxide absorption ability of material surface are studied. It is found that the covalence of Pr–O and Ni–O bond increases with the decrease of alkaline earth element radius. Meanwhile, the mean valence of Ni and the surface hydroxide absorption ability are enhanced. The electrochemical measurement results indicate that the O22 /OH replacement reaction is facilitated by the increase of mean valence of Ni in the material. The best oxygen reduction reaction (ORR) activity is found in Pr1.9Ca0.1NiO4. The current density of 2.16 mA cm−2 is obtained at a potential of −0.6 V (versus Hg/HgO). The tafel slope is 66.48 mV decade−1, close to Pt/C material.

References

References
1.
Armand
,
M.
, and
Tarascon
,
J. M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
2.
Neburchilov
,
V.
,
Wang
,
H.
,
Martin
,
J. J.
, and
Qu
,
W.
,
2010
, “
A Review on Air Cathodes for Zinc–Air Fuel Cells
,”
J. Power Sources
,
195
(
5
), pp.
1271
1291
.
3.
Cheng
,
F.
, and
Chen
,
J.
,
2012
, “
ChemInform Abstract: Metal–Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts
,”
Chem. Soc. Rev.
,
41
(
6
), pp.
2172
2192
.
4.
Greeley
,
J.
,
Stephens
,
I. E. L.
,
Bondarenko
,
A. S.
,
Johansson
,
T. P.
,
Hansen
,
H. A.
,
Jaramillo
,
T. F.
,
Rossmeisl
,
J.
,
Chorkendorff
,
I.
, and
Nørskov
,
J. K.
,
2009
, “
Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts
,”
Nat. Chem.
,
1
(
7
), pp.
552
556
.
5.
Yuan
,
C.
,
Wu
,
H. B.
,
Xie
,
Y.
, and
Lou
,
X. W.
,
2014
, “
Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications
,”
Angew. Chem. Int. Ed.
,
53
(
6
), pp.
1488
1504
.
6.
Jung
,
K. N.
,
Jung
,
J. H.
,
Im
,
W. B.
,
Yoon
,
S.
,
Shin
,
K. H.
, and
Lee
,
J. W.
,
2013
, “
Doped Lanthanum Nickelates With a Layered Perovskite Structure as Bifunctional Cathode Catalysts for Rechargeable Metal–Air Batteries
,”
ACS Appl. Mater. Interfaces
,
5
(
20
), pp.
9902
9907
.
7.
Troncoso
,
L.
,
Alonso
,
J. A.
, and
Aguadero
,
A.
,
2015
, “
Low Activation Energies for Interstitial Oxygen Conduction in the Layered Perovskites La1+xSr1−xInO4+δ
,”
J. Mater. Chem. A.
,
3
(
1
), pp.
17797
17803
.
8.
Villesuzanne
,
A.
,
Paulus
,
W.
,
Cousson
,
A.
,
Hosoya
,
S.
,
Dréau
,
L. L.
,
Hernandez
,
O.
,
Prestipino
,
C.
, and
Houchati
,
M. I.
,
2011
, “
On the Role of Lattice Dynamics on Low-Temperature Oxygen Mobility in Solid Oxides: A Neutron Diffraction and First-Principles Investigation of La2CuO4-δ
,”
J. Solid State Electrochem.
,
15
(
2
), pp.
357
366
.
9.
Perrichon
,
A.
,
Piovano
,
A.
,
Boehm
,
M.
,
Zbiri
,
M.
,
Johnson
,
M.
,
Schober
,
H.
,
Ceretti
,
M.
, and
Paulus
,
W.
,
2015
, “
Lattice Dynamics Modified by Excess Oxygen in Nd2NiO4+δ: Triggering Low-Temperature Oxygen Diffusion
,”
J. Phys. Chem. C.
,
119
(
3
), pp.
1557
1564
.
10.
Boehma
,
E.
,
Bassata
,
J.-M.
,
Dordora
,
P.
,
Mauvya
,
F.
,
Greniera
,
J.-C.
, and
Stevens
,
P.
,
2005
, “
Oxygen Diffusion and Transport Properties in Non-Stoichiometric Ln2−xNiO4+δ Oxides
,”
Solid State Ionics
,
176
(
37
), pp.
2717
2725
.
11.
Zhou
,
X. D.
,
Templeton
,
J. W.
,
Nie
,
Z.
,
Chen
,
H.
,
Stevenson
,
J. W.
, and
Pederson
,
L. R.
,
2012
, “
Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells: V. High Performance and Stable Pr2NiO4 as the Cathode for Solid Oxide Fuel Cells
,”
Electrochim. Acta
,
71
(
3
), pp.
44
49
.
12.
Ferchaud
,
C.
,
Grenier
,
J. C.
,
Ye
,
Z. S.
,
Tuel
,
M. M. A. V.
,
Berkel
,
F. P. F. V.
, and
Bassat
,
J. M.
,
2011
, “
High Performance Praseodymium Nickelate Oxide Cathode for Low Temperature Solid Oxide Fuel Cell
,”
J. Power Sour.
,
196
(
4
), pp.
1872
1879
.
13.
Grimaud
,
A.
,
Mauvy
,
F.
,
Bassat
,
J. M.
,
Fourcade
,
S.
,
Marrony
,
M.
, and
Grenier
,
J. C.
,
2012
, “
Hydration and Transport Properties of the Pr2-xSrxNiO4+δ Compounds as H+-SOFC Cathodes
,”
J. Mater. Chem.
,
22
(
31
), pp.
16017
16025
.
14.
Railsback
,
J. G.
,
Gao
,
Z.
, and
Barnett
,
S. A.
,
2015
, “
Oxygen Electrode Characteristics of Pr2NiO4+δ-Infiltrated Porous (La0.9Sr0.1)(Ga0.8Mg0.2)O3–δ
,”
Solid State Ionics
,
274
, pp.
134
139
.
15.
Flura
,
A.
,
Nicollet
,
C.
,
Fourcade
,
S.
,
Vibhu
,
V.
,
Rougier
,
A.
,
Bassat
,
J. M.
, and
Grenier
,
J. C.
,
2015
, “
Identification and Modelling of the Oxygen Gas Diffusion Impedance in SOFC Porous Electrodes: Application to Pr2NiO4+δ
,”
Electrochimica. Acta
,
174
(
1
), pp.
1030
1040
.
16.
Suntivich
,
J.
,
Gasteiger
,
H. A.
,
Yabuuchi
,
N.
, and
Yang
,
S. H.
,
2010
, “
Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode
,”
J. Electrochem. Soc.
,
157
(
8
), pp.
B1263
B1268
.
17.
Chung
,
Y. K.
,
Kwon
,
Y. U.
, and
Byeon
,
S. H.
,
1995
, “
Synthesis, Structural and Electrical Characterizations of Pr2-xBaxNiO4±δ
,”
Bull. Korean Chem. Soc.
,
16
(
2
), pp.
120
125
.
18.
Singh
,
K. K.
,
Ganguly
,
P.
, and
Goodenough
,
J. B.
,
1984
, “
Unusual Effects of Anisotropic Bonding in Cu(II) and Ni(II) Oxides With K2NiF4 Structure
,”
J. Solid State Chem.
,
52
(
3
), pp.
254
273
.
19.
Odier
,
P.
,
Leblanc
,
M.
, and
Choisnet
,
J.
,
1986
, “
Structural Characterization of an Orthorhombic Form of La2NiO4
,”
Mater. Res. Bull.
,
21
(
7
), pp.
787
796
.
20.
Byeon
,
S. H.
,
Demazeau
,
G.
, and
Choy
,
J. H.
,
1995
, “
Local Distortion and Chemical Surroundings of NiO6 Octahedra for Ni (III) Oxides With K2NiF4-Type Structure
,”
Jpn. J. Appl. Phys.
,
34
(
11
), pp.
6156
6163
.
21.
Lewis
,
G. V.
, and
Catlow
,
C. R. A.
,
1985
, “
Potential Models for Ionic Oxides
,”
J. Phys. C: Solid State Phys.
,
18
(
6
), pp.
1149
1161
.
22.
Read
,
M. S. D.
,
Islam
,
M. S.
,
King
,
F.
, and
Hancock
,
F. E.
,
1999
, “
Defect Chemistry of La2Ni1−xMxO4 (M = Mn, Fe, Co, Cu): Relevance to Catalytic Behavior
,”
J. Phys. Chem. B
,
103
(
9
), pp.
1558
1562
.
23.
Peck
,
M. A.
, and
Langell
,
M. A.
,
2012
, “
Comparison of Nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS
,”
Chem. Mater.
,
24
(
23
), pp.
4483
4490
.
24.
Prabu
,
M.
,
Ketpang
,
K.
, and
Shanmugam
,
S.
,
2014
, “
Hierarchical Nanostructured NiCo2O4 as an Efficient Bifunctional Non-Precious Metal Catalyst for Rechargeable Zinc–Air Batteries
,”
Nanoscale
,
6
(
6
), pp.
3173
3181
.
25.
Li
,
C.
,
Shen
,
Y.
,
Zhu
,
S.
, and
Shen
,
S.
,
2014
, “
Supported Ni–La–Ox for Catalytic Decomposition of N2O I: Component Optimization and Synergy
,”
RSC Adv.
,
4
(
55
), pp.
29107
29119
.
26.
Mickevičius
,
S.
,
Grebinskij
,
S.
,
Bondarenka
,
V.
,
Vengalis
,
B.
,
Šliužienė
,
K.
,
Orlowski
,
B. A.
,
Osinniy
,
V.
, and
Drube
,
W.
,
2006
, “
Investigation of Epitaxial LaNiO3−x Thin Films by High-Energy XPS
,”
J. Alloys Compd.
,
423
(
1–2
), pp.
107
111
.
27.
Yan
,
L.
,
Yu
,
R.
,
Liu
,
G.
, and
Xing
,
X.
,
2008
, “
A Facile Template-Free Synthesis of Large-Scale Single Crystalline Pr(OH)3 and Pr6O11 Nanorods
,”
Scri. Mater.
,
58
(
8
), pp.
707
710
.
28.
Barr
,
T. L.
,
1978
, “
An ESCA Study of the Termination of the Passivation of Elemental Metals
,”
J. Phys. Chem.
,
82
(
16
), pp.
1801
1810
.
29.
Asha
,
A. M. D.
,
Critchley
,
J. T. S.
, and
Nix
,
R. M.
,
1998
, “
Molecular Adsorption Characteristics of Lanthanum Oxide Surfaces: The Interaction of Water With Oxide Overlayers Grown on Cu(111)
,”
Surf. Sci.
,
405
(
2–3
), pp.
201
214
.
30.
Wandelt
,
K.
, and
Brundle
,
C. R.
,
1985
, “
The Interaction of Oxygen With Gadolinium: UPS and XPS Studies
,”
Surf. Sci.
,
157
(
1
), pp.
162
182
.
31.
Moulder
,
J. F.
,
Stichle
,
W. F.
,
Sobol
,
P. E.
, and
Bomben
,
K. D.
,
1992
,
Handbook of X-Ray Photoelectron Spectroscopy
,
Physical Electronics
,
Eden Prairie, MN
, Chap. I.
32.
Singh
,
R. K.
,
Devivaraprasad
,
R.
,
Kar
,
T.
,
Chakraborty
,
A.
, and
Neergat
,
M.
,
2015
, “
Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support
,”
J. Electrochem. Soc.
,
162
(
6
), pp.
489
498
.
33.
Omanovic
,
S.
, and
Roscoe
,
S. G.
,
2000
, “
Interfacial Behavior of Beta-Lactoglobulin at a Stainless Steel Surface: An Electrochemical Impedance Spectroscopy Study
,”
J. Colloid Interface Sci.
,
227
(
2
), pp.
452
460
.
34.
Abreu
,
C. M.
,
Cristobal
,
M. J.
,
Losada
,
R.
,
Novoa
,
X. R.
,
Pena
,
G.
, and
Perez
,
M. C.
,
2004
, “
High Frequency Impedance Spectroscopy Study of Passive Films Formed on AISI 316 Stainless Steel in Alkaline Medium
,”
J. Electroanal. Chem.
,
572
(
2
), pp.
335
345
.
35.
Goodenough
,
J. B.
, and
Cushing
,
B. L.
,
2003
,
Handbook of Fuel Cells – Fundamentals, Technology and Applications
, Vol.
2
,
Wiley
,
New York
, pp.
520
533
.
36.
Sunarso
,
J.
,
Torriero
,
A. A. J.
,
Zhou
,
W.
,
Howlett
,
P. C.
, and
Forsyth
,
M.
,
2012
, “
Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study
,”
J. Phys. Chem. C
,
116
(
9
), pp.
5827
5834
.
37.
Wang
,
Y.
,
Yang
,
Z.
,
Lu
,
F.
,
Jin
,
C.
,
Wu
,
J.
,
Sheng
,
M.
,
Yang
,
R.
, and
Chen
,
F.
,
2015
, “
Carbon-Coating Functionalized La0.6Sr1.4MnO4+δ Layered Perovskite Oxide: Enhanced Catalytic Activity for the Oxygen Reduction Reaction
,”
RSC. Adv.
,
5
(
2
), pp.
974
980
.
38.
Liang
,
Y. Y.
,
Li
,
Y. Y.
,
Wang
,
H. L.
,
Zhou
,
J. G.
,
Wang
,
J.
,
Regier
,
T.
, and
Dai
,
H. J.
,
2011
, “
Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction
,”
Nat. Mater.
,
10
(
10
), pp.
780
786
.
39.
Lee
,
D. U.
,
Kim
,
B. J.
, and
Chen
,
Z. W.
,
2013
, “
One-Pot Synthesis of a Mesoporous NiCo2O4 Nanoplatelet and Graphene Hybrid and Its Oxygen Reduction and Evolution Activities as an Efficient Bi-Functional Electrocatalyst
,”
J. Mater. Chem. A
,
1
(
15
), pp.
4754
4762
.
40.
Bo
,
X. G.
,
Zhang
,
Y. F.
,
Li
,
M.
,
Nsabimana
,
A.
, and
Guo
,
L. P.
,
2015
, “
NiCo2O4 Spinel/Ordered Mesoporous Carbons as Noble-Metal Free Electrocatalysts for Oxygen Reduction Reaction and the Influence of Structure of Catalyst Support on the Electrochemical Activity of NiCo2O4
,”
J. Power Source
,
288
(
15
), pp.
1
8
.
41.
Liu
,
Q.
,
Jin
,
J.
, and
Zhang
,
J. Y.
,
2013
, “
NiCo2S4@Graphene as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions
,”
ACS Appl. Mater. Interfaces
,
5
(
11
), pp.
5002
5008
.
42.
Shypunov
,
I.
,
Kongi
,
N.
,
Kozlova
,
J.
,
Matisen
,
L.
,
Ritslaid
,
P.
,
Sammelselg
,
V.
, and
Tammeveski
,
K.
,
2015
, “
Enhanced Oxygen Reduction Reaction Activity With Electrodeposited Ag on Manganese Oxide–Graphene Supported Electrocatalyst
,”
Electrocatalysis
,
6
(
5
), pp.
465
471
.
You do not currently have access to this content.