This paper provides an extended overview of the existing electrode materials and electrolytes for energy storage systems that can be used in environmentally friendly hybrid and electric vehicles from the literature based on lithium-ion and nonlithium technologies. The performed analysis illustrates the current and future evolution in the field of electrode materials development (2015–2040). The investigated characteristics are specific energy, specific power, cycle life, and safety. Furthermore, the proposed study describes the cost and life cycle assessment of the proposed technologies and the availability of these materials.

References

References
1.
Van Mierlo
,
J.
,
Vereecken
,
L.
,
Maggetto
,
G.
,
Favrel
,
V.
,
Meyer
,
S.
,
Hecq
,
W.
,
Van de Burgwal
,
E.
, and
Gense
,
R.
,
2004
, “
Driving Style and Traffic Measures-Influence on Vehicle Emissions and Fuel Consumption
,”
Proc. Inst. Mech. Eng., Part D
,
218
(
1
), pp.
583
593
.
2.
Van Mierlo
,
J.
,
Vereecken
,
L.
,
Maggetto
,
G.
,
Favrel
,
V.
,
Meyer
,
S.
, and
Hecq
,
W.
,
2005
, “
Comparison of the Environmental Damage Caused by Vehicles With Different Alternative Fuels and Drivetrains in a Brussels Context
,”
Proc. Inst. Mech. Eng., Part D
,
217
(
7
), pp.
583
593
.
3.
Axsen
,
J.
,
Burke
,
A.
, and
Kurani
,
K. S.
,
2008
, “
Batteries for Plug-In Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology Circa 2008
,” Institute of Transportation Studies, University of California Davis, CA, Report No. UCD-ITS-RR-08-14.
4.
Omar
,
N.
,
Van Mierlo
,
J.
,
Verbrugge
,
B.
, and
Van Den Bossche
,
P.
,
2010
, “
Power and Life Enhancement of Battery-Electrical Double Layer Capacitor for Hybrid Electric and Charge-Depleting Plug-In Vehicle Applications
,”
Electrochim. Acta
,
55
(
25
), pp.
7524
7531
.
5.
Omar
,
N.
,
Daowd
,
M.
,
Verbrugge
,
B.
,
Mulder
,
G.
,
Van den Bossche
,
P.
,
Van Mierlo
,
J.
,
Dhaens
,
M.
,
Pauwels
,
S.
, and
Leemans
,
F.
,
2010
, “
Assessment of Performance Characteristics of Lithium-Ion Batteries for PHEV Vehicles Applications Based on a Newly Test Methodology
,”
Electric Vehicle Symposium and Exposition, EVS
25, pp. 1–12.
6.
Axsen
,
J.
,
Kurani
,
K. S.
, and
Burke
,
A.
,
2010
, “
Are Batteries Ready for Plug-In Hybrid Buyers?
Transp. Policy
,
17
(
3
), pp.
173
182
.
7.
Van den Bossche
,
P.
,
Vergels
,
F.
,
Van Mierlo
,
J.
,
Matheys
,
J.
, and
Van Autenboer
,
W.
,
2006
, “
SUBAT: An Assessment of Sustainable Battery Technology
,”
J. Power Sources
,
162
(
2
), pp.
913
919
.
8.
Omar
,
N.
,
Daowd
,
M.
,
Hegaz
,
O.
,
Mulder
,
G.
,
Timmermans
,
J. M.
,
Coosemans
,
T.
,
Van den Bossche
,
P.
, and
Van Mierlo
,
J.
,
2012
, “
Standardization Work for BEV and HEV Applications: Critical Appraisal of Recent Traction Battery Documents
,”
Energies
,
5
(1), pp.
138
156
.
9.
Mulder
,
G.
,
Omar
,
N.
,
Pauwels
,
S.
,
Meeus
,
M.
,
Leemans
,
F.
,
Verbrugge
,
B.
,
De Nijs
,
W.
,
Van den Bossche
,
P.
,
Six
,
D.
, and
Van Mierlo
,
J.
,
2013
, “
Comparison of Commercial Battery Cells in Relation to Material Properties
,”
Electrochim. Acta
,
87
, pp.
473
488
.
10.
Omar
,
N.
,
Van den Bossche
,
P.
,
Mulder
,
G.
,
Daowd
,
M.
,
Timmermans
,
J. M.
,
Van Mierlo
,
J.
, and
Pauwels
,
S.
,
2011
, “
Assessment of Performance of Lithium Iron Phosphate Oxide, Nickel Manganese Cobalt Oxide and Nickel Cobalt Aluminum Oxide Based Cells for Using in Plug-In Battery Electric Vehicle Applications
,”
2011 IEEE Vehicle Power and Propulsion Conference
, pp.
1
7
.
11.
Ohzuku
,
T.
, and
Brodd
,
R. J.
,
2007
, “
An Overview of Positive-Electrode Materials for Advanced Lithium-Ion Batteries
,”
J. Power Sources
,
174
(
2
), pp.
449
456
.
12.
Belharouak
,
I.
,
Lu
,
W.
,
Vissers
,
D.
, and
Amine
,
K.
,
2006
, “
Safety Characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2
,”
Electrochem. Commun.
,
8
(
2
), pp.
329
335
.
13.
Mancini
,
M.
,
2008
, “
Improved Anodic Materials for Lithium-Ion Batteries: Surface Modification by Metal Deposition and Electrochemical Characterization of Oxidized Graphite and Titanium Dioxide Electrodes
,”
Ph.D. thesis
, CINFO Unicam, Camerino, Italy.
14.
Kromer
,
M. A.
, and
Heywood
,
J. B.
,
2007
, “
Electric Powertrains: Opportunities and Challenges in the U.S. Light-Duty Vehicle Fleet
,” Sloan Automotive Laboratory, Cambridge, UK, p.
153
.
15.
Hennige, V., 2013, “
Smart Battery Control System Based on a Charge-Equalization Circuit for an Advanced Dual-Cell Battery for Electric Vehicles
,” SuperLIB, Graz, Austria, accessed Oct. 29, 2015, www.superlib.eu
16.
FP7, 2011, “
Towards Competitive European Batteries
,” EGVI, Brussels, Belgium, accessed Oct. 29, 2015, http://www.batteries2020.eu/
17.
Duval
,
M.
, 2004, “
Advanced Batteries for Electric Drive Vehicles–A Technology and Cost-Effective Assessment for Battery Electric Vehicles, Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid Electric Vehicles
,” EPRI, Palo Alto, CA.
18.
Xu
,
G.-L.
,
Wang
,
Q.
,
Fang
,
J.-C.
,
Xu
,
Y.-F.
,
Li
,
J.-T.
,
Huang
,
L.
, and
Sun
,
S.-G.
,
2014
, “
Tuning the Structure and Property of Nanostructured Cathode Materials of Lithium Ion and Lithium Sulfur Batteries
,”
J. Mater. Chem. A
,
2
(
47
), pp.
19941
19962
.
19.
Roscher
,
M. A.
,
Bohlen
,
O.
, and
Vetter
,
J.
,
2011
, “
OCV Hysteresis in Li-Ion Batteries Including Two-Phase Transition Materials
,”
Int. J. Electrochem.
,
2011
, pp.
1
6
.
20.
Thackeray
,
M. M.
,
Thomas
,
J. O.
, and
Whittingham
,
M. S.
,
2011
, “
Science and Applications of Mixed Conductors for Lithium Batteries
,”
MRS Bull.
,
25
(
3
), pp.
39
46
.
21.
Bruce
,
P. G.
,
Scrosati
,
B.
, and
Tarascon
,
J.-M.
,
2008
, “
Nanomaterials for Rechargeable Lithium Batteries
,”
Angew. Chem. Int. Ed.
,
47
(
16
), pp.
2930
2946
.
22.
Endo
,
M.
,
Kim
,
C.
,
Nishimura
,
K.
,
Fujino
,
T.
, and
Miyashita
,
K.
,
2000
, “
Recent Development of Carbon Materials for Li Ion Batteries
,”
Carbon
,
38
(
2
), pp.
183
197
.
23.
Andersson
,
A. M.
,
Henningson
,
A.
,
Siegbahn
,
H.
,
Jansson
,
U.
, and
Edström
,
K.
,
2003
, “
Electrochemically Lithiated Graphite Characterised by Photoelectron Spectroscopy
,”
J. Power Sources
,
119–121
, pp.
522
527
.
24.
Vetter
,
J.
,
Novák
,
P.
,
Wagner
,
M. R.
,
Veit
,
C.
,
Möller
,
K. C.
,
Besenhard
,
J. O.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
,
2005
, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
147
(
1–2
), pp.
269
281
.
25.
Dubarry
,
M.
,
Truchot
,
C.
, and
Liaw
,
B. Y.
,
2014
, “
Cell Degradation in Commercial LiFePO4 Cells With High-Power and High-Energy Designs
,”
J. Power Sources
,
258
, pp.
408
419
.
26.
Ning
,
G.
,
Haran
,
B.
, and
Popov
,
B. N.
,
2003
, “
Capacity Fade Study of Lithium-Ion Batteries Cycled at High Discharge Rates
,”
J. Power Sources
,
117
(
1–2
), pp.
160
169
.
27.
Broussely
,
M.
,
Herreyre
,
S.
,
Biensan
,
P.
,
Kasztejna
,
P.
,
Nechev
,
K.
, and
Staniewicz
,
R. J.
,
2001
, “
Aging Mechanism in Li Ion Cells and Calendar Life Predictions
,”
J. Power Sources
,
97–98
, pp.
13
21
.
28.
Patterson
,
M. L.
,
2009
, “
Anode Materials for Lithium Ion Batteries
,”
Indiana University Battery Workshop
, Enerdel, Inc., Indianapolis, IN.
29.
Srinivasan
,
V.
,
2010
, “
Present Research and Future Focus of the Batteries of Advanced Transportation Technologies Program
,”
ONRL Meeting
, pp.
1
62
.
30.
Kubiak
,
P.
,
Edström
,
K.
, and
Morcrette
,
M.
, 2015, “
Review on Ageing Mechanisms of Different Li-Ion Batteries for Automotive Applications
,”
J. Power Sources
,
241
, pp.
680
689
.
31.
Kubiak
,
P.
,
Geserick
,
J.
,
Hüsing
,
N.
, and
Wohlfahrt-Mehrens
,
M.
,
2008
, “
Electrochemical Performance of Mesoporous TiO2 Anatase
,”
J. Power Sources
,
175
(
1
), pp.
510
516
.
32.
Omar
,
N.
,
Daowd
,
M.
,
Hegazy
,
O.
,
Al Sakka
,
M.
,
Coosemans
,
T.
,
Van den Bossche
,
P.
, and
Van Mierlo
,
J.
,
2012
, “
Assessment of Lithium-Ion Capacitor for Using in Battery Electric Vehicle and Hybrid Electric Vehicle Applications
,”
Electrochim. Acta
,
86
, pp.
305
315
.
33.
Burke
,
A.
, and
Miller
,
M.
,
2009
, “
Performance Characteristics of Lithium-Ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles
,”
EVS24 Internationl Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition
, pp.
1
13
.
34.
Landi
,
B. J.
,
2009
, “
Nanomaterial Approaches to Enhance Lithium Ion Batteries
,”
OECD Conference on Potential Environmental Benefits of Nanotechnology: Fostering Safe Innovation-Led Growth
, Paris, July 15–17.
35.
Lou
,
X. W.
,
Wang
,
Y.
,
Yuan
,
C.
,
Lee
,
J. Y.
, and
Archer
,
L. A.
,
2006
, “
Template-Free Synthesis of SnO2 Hollow Nanostructures With High Lithium Storage Capacity
,”
Adv. Mater.
,
18
(
17
), pp.
2325
2329
.
36.
Feng
,
L.
,
Xuan
,
Z.
,
Ji
,
S.
,
Min
,
W.
,
Zhao
,
H.
, and
Gao
,
H.
,
2015
, “
Preparation of SnO2 Nanoparticle and Performance as Lithium-Ion Battery Anode
,”
Int. J. Electrochem. Sci.
,
10
(2015), pp.
2370
2376
.
37.
Seo
,
J.
,
Jang
,
J.
,
Park
,
S.
,
Kim
,
C.
,
Park
,
B.
, and
Cheon
,
J.
,
2008
, “
Two-Dimensional SnS2 Nanoplates With Extraordinary High Discharge Capacity for Lithium Ion Batteries
,”
Adv. Mater.
,
20
(
22
), pp.
4269
4273
.
38.
Mukaibo
,
H.
,
Yoshizawa
,
A.
,
Momma
,
T.
, and
Osaka
,
T.
,
2003
, “
Particle Size and Performance of SnS2 Anodes for Rechargeable Lithium Batteries
,”
J. Power Sources
,
119–121
, pp.
60
63
.
39.
Kepler
,
K. D.
,
1999
, “
LixCu6Sn5 (0<x<13): An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries
,”
Electrochem. Solid-State Lett.
,
2
(
7
), p.
307
.
40.
Tao
,
H.
,
2011
, “
Reality and Future of Rechargeable Lithium Batteries
,”
Open Mater. Sci. J.
,
5
(
1
), pp.
204
214
.
41.
Morigaki
,
K.
, and
Ohta
,
A.
,
1998
, “
Analysis of the Surface of Lithium in Organic Electrolyte by Atomic Force Microscopy, Fourier Transform Infrared Spectroscopy and Scanning Auger Electron Microscopy
,”
J. Power Sources
,
76
(
2
), pp.
159
166
.
42.
Aurbach
,
D.
,
Zinigrad
,
E.
,
Cohen
,
Y.
, and
Teller
,
H.
,
2002
, “
A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions
,”
Solid State Ionics
,
148
(3–4), pp.
405
416
.
43.
Zaghib
,
K.
,
1998
, “
Electrochemistry of Anodes in Solid-State Li-Ion Polymer Batteries
,”
J. Electrochem. Soc.
,
145
(
9
), p.
3135
.
44.
Christensen
,
J.
,
Albertus
,
P.
,
Sanchez-Carrera
,
R. S.
,
Lohmann
,
T.
,
Kozinsky
,
B.
,
Liedtke
,
R.
,
Ahmed
,
J.
, and
Kojic
,
A.
,
2012
, “
A Critical Review of Li/Air Batteries
,”
J. Electrochem. Soc.
,
159
(
2
), pp.
R1
R30
.
45.
Gireaud
,
L.
,
Grugeon
,
S.
,
Laruelle
,
S.
,
Yrieix
,
B.
, and
Tarascon
,
J.-M.
,
2006
, “
Lithium Metal Stripping/Plating Mechanisms Studies: A Metallurgical Approach
,”
Electrochem. Commun.
,
8
(10), pp. 1639–1649.
46.
Mayers
,
M. Z.
,
Kaminski
,
J. W.
, and
Miller
,
T. F.
,
2012
, “
Suppression of Dendrite Formation Via Pulse Charging in Rechargeable Lithium Metal Batteries
,”
J. Phys. Chem. C
,
116
(
50
), pp.
26214
26221
.
47.
Larcher
,
D.
,
Beattie
,
S.
,
Morcrette
,
M.
,
Edström
,
K.
,
Jumas
,
J.-C.
, and
Tarascon
,
J.-M.
,
2007
, “
Recent Findings and Prospects in the Field of Pure Metals as Negative Electrodes for Li-Ion Batteries
,”
J. Mater. Chem.
,
17
(
36
), p.
3759
.
48.
Beaulieu
,
L. Y.
,
Eberman
,
K. W.
,
Turner
,
R. L.
,
Krause
,
L. J.
, and
Dahn
,
J. R.
,
2001
, “
Colossal Reversible Volume Changes in Lithium Alloys
,”
Electrochem. Solid-State Lett.
,
4
(
9
), p.
A137
.
49.
Bourderau
,
S.
,
Brousse
,
T.
, and
Schleich
,
D.
,
1999
, “
Amorphous Silicon as a Possible Anode Material for Li-Ion Batteries
,”
J. Power Sources
,
81–82
, pp.
233
236
.
50.
Fong
,
R.
,
1990
, “
Studies of Lithium Intercalation Into Carbons Using Nonaqueous Electrochemical Cells
,”
J. Electrochem. Soc.
,
137
(
7
), p.
2009
.
51.
Nazri
,
G.-A.
, and
Pistoia
,
G.
,
2009
,
Lithium Batteries: Science and Technology
,
Springer
, New York.
52.
Guo
,
J.
,
Sun
,
A.
,
Chen
,
X.
,
Wang
,
C.
, and
Manivannan
,
A.
,
2011
, “
Cyclability Study of Silicon–Carbon Composite Anodes for Lithium-Ion Batteries Using Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
,
56
(
11
), pp.
3981
3987
.
53.
Maranchi
,
J. P.
,
Hepp
,
A. F.
, and
Kumta
,
P. N.
,
2003
, “
High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries
,”
Electrochem. Solid-State Lett.
,
6
(
9
), p.
A198
.
54.
Lestriez
,
B.
,
Bahri
,
S.
,
Sandu
,
I.
,
Roue
,
L.
, and
Guyomard
,
D.
,
2007
, “
On the Binding Mechanism of CMC in Si Negative Electrodes for Li-Ion Batteries
,”
Electrochem. Commun.
,
9
(
12
), pp.
2801
2806
.
55.
Magasinski
,
A.
,
Zdyrko
,
B.
,
Kovalenko
,
I.
,
Hertzberg
,
B.
,
Burtovyy
,
R.
,
Huebner
,
C. F.
,
Fuller
,
T. F.
,
Luzinov
,
I.
, and
Yushin
,
G.
,
2010
, “
Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid
,”
ACS Appl. Mater. Interfaces
,
2
(
11
), pp.
3004
3010
.
56.
Liu
,
G.
,
Xun
,
S.
,
Vukmirovic
,
N.
,
Song
,
X.
,
Olalde-Velasco
,
P.
,
Zheng
,
H.
,
Battaglia
, V
. S.
,
Wang
,
L.
, and
Yang
,
W.
,
2011
, “
Polymers With Tailored Electronic Structure for High Capacity Lithium Battery Electrodes
,”
Adv. Mater.
,
23
(
40
), pp.
4679
4683
.
57.
Cui
,
L.-F.
,
Yang
,
Y.
,
Hsu
,
C.-M.
, and
Cui
,
Y.
,
2009
, “
Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries
,”
Nano Lett.
,
9
(
9
), pp.
3370
3374
.
58.
Magasinski
,
A.
,
Dixon
,
P.
,
Hertzberg
,
B.
,
Kvit
,
A.
,
Ayala
,
J.
, and
Yushin
,
G.
,
2010
, “
High-Performance Lithium-Ion Anodes Using a Hierarchical Bottom-Up Approach
,”
Nat. Mater.
,
9
, pp.
353
358
.
59.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
60.
Zhamu
,
A.
, and
Jang
,
B. Z.
,
2012
, “
Method of Producing Prelithiated Anodes for Secondary Lithium Ion Batteries
,” U.S. Patent No.
8158282 B2
.
61.
Wu
,
H.
,
Chan
,
G.
,
Choi
,
J. W.
,
Ryu
,
I.
,
Yao
,
Y.
,
McDowell
,
M. T.
,
Lee
,
S. W.
,
Jackson
,
A.
,
Yang
,
Y.
,
Hu
,
L.
, and
Cui
,
Y.
,
2012
, “
Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes Through Solid-Electrolyte Interphase Control
,”
Nat. Nanotechnol.
,
7
(
5
), pp.
310
315
.
62.
Liu
,
N.
,
Wu
,
H.
,
McDowell
,
M. T.
,
Yao
,
Y.
,
Wang
,
C.
, and
Cui
,
Y.
,
2012
, “
A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
,”
Nano Lett.
,
12
(
6
), pp.
3315
3321
.
63.
Sharma
,
R. A.
, and
Seefurth
,
R. N.
,
1976
, “
Thermodynamic Properties of the Lithium-Silicon System
,”
J. Electrochem. Soc.
,
123
(
12
), p.
1763
.
64.
Liu
,
W.-R.
,
Guo
,
Z.-Z.
,
Young
,
W.-S.
,
Shieh
,
D.-T.
,
Wu
,
H.-C.
,
Yang
,
M.-H.
, and
Wu
,
N.-L.
,
2005
, “
Effect of Electrode Structure on Performance of Si Anode in Li-Ion Batteries: Si Particle Size and Conductive Additive
,”
J. Power Sources
,
140
(
1
), pp.
139
144
.
65.
Holzapfel
,
M.
,
Buqa
,
H.
,
Scheifele
,
W.
,
Novák
,
P.
, and
Petrat
,
F.-M.
,
2005
, “
A New Type of Nano-Sized Silicon/Carbon Composite Electrode for Reversible Lithium Insertion
,”
Chem. Commun.
,
81–82
(
12
), pp.
1566
1568
.
66.
Garcia
,
B.
,
Millet
,
M.
,
Pereira-Ramos
,
J. P.
,
Baffier
,
N.
, and
Bloch
,
D.
,
1999
, “
Electrochemical Behaviour of Chemically Lithiated LixV2O5 Phases (0.9 ≤ x ≤ 1.6)
,”
J. Power Sources
,
81–82
, pp.
670
674
.
67.
Landi
,
B. J.
,
Ganter
,
M. J.
,
Cress
,
C. D.
,
DiLeo
,
R. A.
, and
Raffaelle
,
R. P.
,
2009
, “
Carbon Nanotubes for Lithium Ion Batteries
,”
Energy Environ. Sci.
,
2
(
6
), p.
638
.
68.
Pereira
,
N.
,
Amatucci
,
G. G.
, and
Klein
,
L. C.
,
2000
, “
Abstract 126
,”
The Electrochemical Society Meeting Abstracts
, Vol.
2000–2
.
69.
Zhang
,
Z.
,
Yang
,
J.
,
Nuli
,
Y.
,
Wang
,
B.
, and
Xu
,
J.
,
2005
, “
CoPx Synthesis and Lithiation by Ball-Milling for Anode Materials of Lithium Ion Cells
,”
Solid State Ionics
,
176
(
7–8
), pp.
693
697
.
70.
Yakovleva
,
M.
,
Gao
,
Y.
,
Fitch
,
K. B.
, and
Li
,
Y.
,
2009
, “
Stabilised Lithium Metal Powder-Material and Application Technologies for High Energy Li-Ion Batteries
,”
26th International Battery Seminar and Exhibit
, Fort Lauderdale, Florida, Mar. 16–19, pp. 1–199.
71.
Forney
,
M. W.
,
Ganter
,
M. J.
,
Staub
,
J. W.
,
Ridgley
,
R. D.
, and
Landi
,
B. J.
,
2013
, “
Prelithiation of Silicon-Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP)
,”
Nano Lett.
,
13
(
9
), pp.
4158
4163
.
72.
Tang
,
W. S.
,
Chotard
,
J. N.
, and
Janot
,
R.
,
2013
, “
Synthesis of Single Phase LiSi by Ball-Milling: Electrochemical Behaviour and Hydrogenation Properties
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
A1232
A1240
.
73.
Whittingham
,
M. S.
,
2004
, “
Lithium Batteries and Cathode Materials
,”
Chem. Rev.
,
104
(
10
), pp.
4271
4301
.
74.
Choi
,
J. A.
,
Shim
,
E. G.
,
Scrosati
,
B.
, and
Kim
,
D. W.
,
2010
, “
Mixed Electrolytes of Organic Solvents and Ionic Liquid for Rechargeable Lithium-Ion Batteries
,”
Bull. Korean Chem. Soc.
,
31
(
11
), pp.
3190
3194
.
75.
Antolini
,
E.
,
2004
, “
LiCoO2: Formation, Structure, Lithium and Oxygen Nonstoichiometry, Electrochemical Behaviour and Transport Properties
,”
Solid State Ionics
,
170
(
3–4
), pp.
159
171
.
76.
Amriou
,
T.
,
Khelifa
,
B.
,
Aourag
,
H.
,
Aouadi
,
S. M.
, and
Mathieu
,
C.
,
2005
, “
Ab Initio Investigation of the Jahn-Teller Distortion Effect on the Stabilizing Lithium Intercalated Compounds
,”
Mater. Chem. Phys.
,
92
(
2–3
), pp.
499
504
.
77.
Liu
,
H.
,
Yang
,
Y.
, and
Zhang
,
J.
,
2007
, “
Reaction Mechanism and Kinetics of Lithium Ion Battery Cathode Material LiNiO2 With CO2
,”
J. Power Sources
,
173
(
1
), pp.
556
561
.
78.
Rougier
,
A.
,
Gravereau
,
P.
, and
Delmas
,
C.
,
1996
, “
Optimization of the Composition of the Li1−zNi1+zO2 Electrode Materials: Structural, Magnetic, and Electrochemical Studies
,”
J. Electrochem. Soc.
,
143
(
4
), pp.
1168
1175
.
79.
Wang
,
F.
,
Yang
,
J.
,
NuLi
,
Y.
, and
Wang
,
J.
,
2010
, “
Highly Promoted Electrochemical Performance of 5 V LiCoPO4 Cathode Material by Addition of Vanadium
,”
J. Power Sources
,
195
(
19
), pp.
6884
6887
.
80.
Ju
,
S. H.
,
Jang
,
H. C.
, and
Kang
,
Y. C.
,
2008
, “
LiCo1−xAlxO2 (0 ≤ x ≤ 0.05) Cathode Powders Prepared From the Nanosized Co1−xAlxOy Precursor Powders
,”
Mater. Chem. Phys.
,
112
(
2
), pp.
536
541
.
81.
Gao
,
Y.
,
Yakovleva
,
M. V.
, and
Ebner
,
W. B.
,
1999
, “
Novel LiNi1−xTix/2Mgx/2O2 Compounds as Cathode Materials for Safer Lithium-Ion Batteries
,”
Electrochem. Solid-State Lett.
,
1
(
3
), p.
117
.
82.
Sawai
,
K.
,
Yamato
,
R.
, and
Ohzuku
,
T.
,
2006
, “
Impedance Measurements on Lithium-Ion Battery Consisting of Li[Li1/3Ti5/3]O4 and LiCo1/2Ni1/2O2
,”
Electrochim. Acta
,
51
(
8–9
), pp.
1651
1655
.
83.
Huang
,
X. H.
,
Tu
,
J. P.
,
Zhang
,
C. Q.
, and
Zhou
,
F.
,
2010
, “
Hollow Microspheres of NiO as Anode Materials for Lithium-Ion Batteries
,”
Electrochim. Acta
,
55
(
28
), pp.
8981
8985
.
84.
Chen
,
C. H.
,
Liu
,
J.
,
Stoll
,
M. E.
,
Henriksen
,
G.
,
Vissers
,
D. R.
, and
Amine
,
K.
,
2004
, “
Aluminum-Doped Lithium Nickel Cobalt Oxide Electrodes for High-Power Lithium-Ion Batteries
,”
J. Power Sources
,
128
(
2
), pp.
278
285
.
85.
Armstrong
,
A. R.
, and
Bruce
,
P. G.
,
1996
, “
Synthesis of Layered LiMnO2 as an Electrode for Rechargeable Lithium Batteries
,”
Nature
,
381
(
6582
), pp.
499
500
.
86.
Srinivasan
,
V.
,
2008
, “
Batteries for Vehicular Applications
,”
AIP Conf. Proc.
,
1044
, pp.
283
296
.
87.
Meeus
,
M.
,
2011
, “
Introduction in Battery Technologies and in the Cars of the Future
,”
Summer School
, Brussels, Belgium.
88.
Smekens
,
J.
,
Paulsen
,
J.
,
Yang
,
W.
,
Omar
,
N.
,
Deconinck
,
J.
,
Hubin
,
A.
, and
Van Mierlo
,
J.
,
2015
, “
A Modified Multiphysics Model for Lithium-Ion Batteries With a Li1/3Mn1/3Co1/3O2 Electrode
,”
Electrochim. Acta
,
174
, pp.
615
624
.
89.
Noh
,
H. J.
,
Youn
,
S.
,
Yoon
,
C. S.
, and
Sun
,
Y. K.
,
2013
, “
Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
233
, pp.
121
130
.
90.
Amatucci
,
G.
, and
Tarascon
,
J.-M.
,
2002
, “
Optimization of Insertion Compounds Such as LiMn2O4 for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
149
(
12
), pp.
K31
K46
.
91.
Amine
,
K.
,
Liu
,
J.
,
Kang
,
S.
,
Belharouak
,
I.
,
Hyung
,
Y.
,
Vissers
,
D.
, and
Henriksen
,
G.
,
2004
, “
Improved Lithium Manganese Oxide Spinel/Graphite Li-Ion Cells for High-Power Applications
,”
J. Power Sources
,
129
(
1
), pp.
14
19
.
92.
Choi
,
W.
, and
Manthiram
,
A.
,
2007
, “
Factors Controlling the Fluorine Content and the Electrochemical Performance of Spinel Oxyfluoride Cathodes
,”
J. Electrochem. Soc.
,
154
(
8
), pp.
A792
A797
.
93.
Tarascon
,
J. M.
,
1991
, “
The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells
,”
J. Electrochem. Soc.
,
138
(
10
), p.
2859
.
94.
Davidson
,
I.
,
McMillan
,
R.
,
Slegr
,
H.
,
Luan
,
B.
,
Kargina
,
I.
,
Murray
,
J.
, and
Swainson
,
I.
,
1999
, “
Electrochemistry and Structure of Li2−xCryMn2−yO4 Phases
,”
J. Power Sources
,
81–82
, pp.
406
411
.
95.
Padhi
,
A. K.
,
Nanjundaswamy
,
K. S.
, and
Goodenough
,
J. B.
,
1997
, “
Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
144
(
4
), pp.
1188
1194
.
96.
Ong, S. P.,
2011
, “
First Principles Design and Investigation of Lithium-Ion Battery Cathodes and Electrolytes
,”
Ph.D. dissertation
, Massachusetts Institute of Technology, Cambridge, MA.
97.
Chung
,
S.-Y.
,
Bloking
,
J. T.
, and
Chiang
,
Y.-M.
,
2002
, “
Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes
,”
Nat. Mater.
,
1
(
2
), pp.
123
128
.
98.
Herle
,
P. S.
,
Ellis
,
B.
,
Coombs
,
N.
, and
Nazar
,
L. F.
,
2004
, “
Nano-Network Electronic Conduction in Iron and Nickel Olivine Phosphates
,”
Nat. Mater.
,
3
(
3
), pp.
147
152
.
99.
Omar
,
N.
,
Firouz
,
Y.
,
Timmermans
,
J. M.
,
Monem
,
M. A.
,
Gualous
,
H.
,
Coosemans
,
T.
,
Van den Bossche
,
P.
, and
Van Mierlo
,
J.
,
2014
, “
Lithium Iron Phosphate–Assessment of Calendar Life and Change of Battery Parameters
,”
2014 IEEE Vehicle Power and Propulsion Conference (VPPC)
, pp.
1
5
.
100.
Bramnik
,
N. N.
,
Bramnik
,
K. G.
,
Buhrmester
,
T.
,
Baehtz
,
C.
,
Ehrenberg
,
H.
, and
Fuess
,
H.
,
2004
, “
Electrochemical and Structural Study of LiCoPO4-Based Electrodes
,”
J. Solid State Electrochem.
,
8
(
8
), pp.
558
564
.
101.
Yamada
,
A.
, and
Chung
,
S.-C.
,
2001
, “
Crystal Chemistry of the Olivine-Type Li(MnyFe1−yPO4 and (MnyFe1−y)PO4 as Possible 4 V Cathode Materials for Lithium Batteries
,”
J. Electrochem. Soc.
,
148
(
8
), p.
A960
.
102.
Kwon
,
I.
,
Drezen
,
T.
,
Crouzet
,
N. H.
,
Teerlinck
,
M.
,
Isono
,
I.
, and
Exnar
,
M.
,
2006
, “
Enhanced Electrochemical Performance of Nanozied LiMnPO4 for Lithium Ion Batteries
,”
International Meeting on Lithium Batteries
, Biarritz, France, June 18–23.
103.
Gover
,
R. K. B.
,
Bryan
,
A.
,
Burns
,
P.
, and
Barker
,
J.
,
2006
, “
The Electrochemical Insertion Properties of Sodium Vanadium Fluorophosphate, Na3V2(PO4)2F3
,”
Solid State Ionics
,
177
(
17–18
), pp.
1495
1500
.
104.
Langrock
,
A.
,
Xu
,
Y.
,
Liu
,
Y.
,
Ehrman
,
S.
,
Manivannan
,
A.
, and
Wang
,
C.
,
2013
, “
Carbon Coated Hollow Na2FePO4F Spheres for Na-Ion Battery Cathodes
,”
J. Power Sources
,
223
, pp.
62
67
.
105.
Delacourt
,
C.
,
Poizot
,
P.
,
Levasseur
,
S.
, and
Masquelier
,
C.
,
2006
, “
Size Effects on Carbon-Free LiFePO4 Powders
,”
Electrochem. Solid-State Lett.
,
9
(
7
), p.
A352
.
106.
Kim
,
D.-H.
, and
Kim
,
J.
,
2006
, “
Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties
,”
Electrochem. Solid-State Lett.
,
9
(
9
), p.
A439
.
107.
Nyten
,
A.
,
Abouimrane
,
A.
,
Armand
,
M.
,
Gustafsson
,
T.
, and
Thomas
,
J. O.
,
2005
, “
Electrochemical Performance of Li2FeSiO4 as a New Li-Battery Cathode Material
,”
Electrochem. Commun.
,
7
(
2
), pp.
156
160
.
108.
Muraliganth
,
T.
,
Stroukoff
,
K. R.
, and
Manthiram
,
A.
,
2010
, “
Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries
,”
Chem. Mater.
,
22
(
20
), pp.
5754
5761
.
109.
Lyness
,
C.
,
Delobel
,
B.
,
Armstrong
,
A. R.
, and
Bruce
,
P. G.
,
2007
, “
The Lithium Intercalation Compound Li2CoSiO4 and Its Behaviour as a Positive Electrode for Lithium Batteries
,”
Chem. Commun.
,
15
(
46
), p.
4890
.
110.
Gong
,
Z. L.
,
Li
,
Y. X.
, and
Yang
,
Y.
,
2007
, “
Synthesis and Electrochemical Performance of Li2CoSiO4 as Cathode Material for Lithium Ion Batteries
,”
J. Power Sources
,
174
(
2
), pp.
524
527
.
111.
Eames
,
C.
,
Armstrong
,
A. R.
,
Bruce
,
P. G.
, and
Islam
,
M. S.
,
2012
, “
Insights Into Changes in Voltage and Structure of Li2FeSiO4 Polymorphs for Lithium-Ion Batteries
,”
Chem. Mater.
,
24
(
11
), pp.
2155
2161
.
112.
Ghosh
,
P.
,
Mahanty
,
S.
, and
Basu
,
R. N.
,
2009
, “
Improved Electrochemical Performance of Li2MnSiO4/C Composite Synthesized by Combustion Technique
,”
J. Electrochem. Soc.
,
156
(
8
), p.
A677
.
113.
Islam
,
M. S.
,
Dominko
,
R.
,
Masquelier
,
C.
,
Sirisopanaporn
,
C.
,
Armstrong
,
A. R.
, and
Bruce
,
P. G.
,
2011
, “
Silicate Cathodes for Lithium Batteries: Alternatives to Phosphates?
J. Mater. Chem.
,
21
(27), pp.
9811
9818
.
114.
Taige
,
M.
,
Hilbert
,
D.
, and
Schubert
,
T. J. S.
,
2012
, “
Mixtures of Ionic Liquids as Possible Electrolytes for Lithium Ion Batteries
,”
Z. Phys. Chem.
,
226
(
2
), pp.
129
139
.
115.
Janek
,
M. F. J.
,
Buschmann
,
H.
,
Luerssen
,
B.
,
Hoffmann
,
F.
, and
Roggenbuck
,
J.
,
2008
, “
Disperse Elektrolyte für Lithiumionen-Batterien
,”
Chem. Eng. Technol.
,
80
(9), p.
1241
.
116.
Xu
,
K.
,
2004
, “
Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
,”
Chem. Rev.
,
104
(
10
), pp.
4303
4417
.
117.
Wenige
,
V. H. R.
,
Niemann
,
M.
,
Heider
,
U.
, and
Jungnitz
,
M.
,
2010
, “
Liquid Electrolyte Systems for Advanced Lithium Batteries
,” Merck KGaA, Darmstadt, Germany.
118.
Xu
,
B.
,
Qian
,
D.
,
Wang
,
Z.
, and
Meng
,
Y. S.
,
2012
, “
Recent Progress in Cathode Materials Research for Advanced Lithium Ion Batteries
,”
Mater. Sci. Eng. R Rep.
,
73
(
5–6
), pp.
51
65
.
119.
Lewandowski
,
A.
, and
Świderska-Mocek
,
A.
,
2009
, “
Ionic Liquids as Electrolytes for Li-Ion Batteries—An Overview of Electrochemical Studies
,”
J. Power Sources
,
194
(
2
), pp.
601
609
.
120.
Sakaebe
,
H.
, and
Matsumoto
,
H.
,
2003
, “
N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI)–Novel Electrolyte Base for Li Battery
,”
Electrochem. Commun.
,
5
(
7
), pp.
594
598
.
121.
Katayama
,
Y.
,
Yukumoto
,
M.
, and
Miura
,
T.
,
2003
, “
Electrochemical Intercalation of Lithium Into Graphite in Room-Temperature Molten Salt Containing Ethylene Carbonate
,”
Electrochem. Solid-State Lett.
,
6
(5), pp. A96–A97.
122.
Holzapfel
,
M.
,
Jost
,
C.
, and
Novák
,
P.
,
2004
, “
Stable Cycling of Graphite in an Ionic Liquid Based Electrolyte
,”
Chem. Commun.
,
150
(
18
), pp.
2098
2099
.
123.
Marcus
,
Y.
, 2008,
Ions in Solution and Their Solvation
, Wiley, Hoboken, NJ.
124.
Zhong
,
H.
,
Wang
,
C.
,
Xu
,
Z.
,
Ding
,
F.
, and
Liu
,
X.
,
2016
, “
A Novel Quasi-Solid State Electrolyte With Highly Effective Polysulfide Diffusion Inhibition for Lithium-Sulfur Batteries
,”
Sci. Rep.
,
6
, p.
25484
.
125.
Yin
,
Y.-X.
,
Xin
,
S.
,
Guo
,
Y.-G.
, and
Wan
,
L.-J.
,
2013
, “
Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
,”
Angew. Chem. Int. Ed.
,
52
(
50
), pp.
13186
13200
.
126.
Manthiram
,
A.
,
Chung
,
S.-H.
, and
Zu
,
C.
,
2015
, “
Lithium-Sulfur Batteries: Progress and Prospects
,”
Adv. Mater.
,
27
(
12
), pp.
1980
2006
.
127.
Agostini
,
M.
,
Scrosati
,
B.
, and
Hassoun
,
J.
,
2015
, “
An Advanced Lithium-Ion Sulfur Battery for High Energy Storage
,”
Adv. Energy Mater.
,
5
(16), p. 1500481.
128.
Chen
,
L.
, and
Shaw
,
L. L.
,
2014
, “
Recent Advances in Lithium–Sulfur Batteries
,”
J. Power Sources
,
267
, pp.
770
783
.
129.
Evers
,
S.
, and
Nazar
,
L. F.
,
2013
, “
New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes
,”
Acc. Chem. Res.
,
46
(
5
), pp.
1135
1143
.
130.
Manthiram
,
A.
,
Fu
,
Y.
,
Chung
,
S.-H.
,
Zu
,
C.
, and
Su
,
Y.-S.
,
2014
, “
Rechargeable Lithium–Sulfur Batteries
,”
Chem. Rev.
,
114
(
23
), pp.
11751
11787
.
131.
Manthiram
,
A.
,
Fu
,
Y.
, and
Su
,
Y.-S.
,
2013
, “
Challenges and Prospects of Lithium-Sulfur Batteries
,”
Acc. Chem. Res.
,
46
(
5
), pp.
1125
1134
.
132.
Chen
,
R.
,
Zhao
,
T.
, and
Wu
,
F.
,
2014
, “
From Historic Review to Horizon Beyond: Lithium-Sulphur Batteries Run on the Wheels
,”
Chem. Commun.
,
51
(1), pp.
18
33
.
133.
Ji
,
X.
, and
Nazar
,
L. F.
,
2010
, “
Advances in Li-S Batteries
,”
J. Mater. Chem.
,
20
(
44
), p.
9821
.
134.
Huang
,
J.-Q.
,
Zhang
,
Q.
,
Peng
,
H.-J.
,
Liu
,
X.-Y.
,
Qian
,
W.-Z.
, and
Wei
,
F.
,
2014
, “
Ionic Shield for Polysulfides Towards Highly-Stable Lithium–Sulfur Batteries
,”
Energy Environ. Sci.
,
7
(
1
), pp.
347
353
.
135.
Mikhaylik
,
Y. V.
, and
Akridge
,
J. R.
,
2004
, “
Polysulfide Shuttle Study in the Li/S Battery System
,”
J. Electrochem. Soc.
,
151
(
11
), p.
A1969
.
136.
Fronczek
,
D. N.
, and
Bessler
,
W. G.
,
2013
, “
Insight Into Lithium–Sulfur Batteries: Elementary Kinetic Modeling and Impedance Simulation
,”
J. Power Sources
,
244
, pp.
183
188
.
137.
Cheon
,
S.-E.
,
Ko
,
K.-S.
,
Cho
,
J.-H.
,
Kim
,
S.-W.
,
Chin
,
E.-Y.
, and
Kim
,
H.-T.
,
2003
, “
Rechargeable Lithium Sulfur Battery
,”
J. Electrochem. Soc.
,
150
(
6
), p.
A796
.
138.
Nelson
,
J.
,
Misra
,
S.
,
Yang
,
Y.
,
Jackson
,
A.
,
Liu
,
Y.
,
Wang
,
H.
,
Dai
,
H.
,
Andrews
,
J. C.
,
Cui
,
Y.
, and
Toney
,
M. F.
,
2012
, “
In Operando X-Ray Diffraction and Transmission X-Ray Microscopy of Lithium Sulfur Batteries
,”
J. Am. Chem. Soc.
,
134
(
14
), pp.
6337
6343
.
139.
Zhou
,
G.
,
Pei
,
S.
,
Li
,
L.
,
Wang
,
D.-W.
,
Wang
,
S.
,
Huang
,
K.
,
Yin
,
L.-C.
,
Li
,
F.
, and
Cheng
,
H.-M.
,
2014
, “
A Graphene-Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries
,”
Adv. Mater.
,
26
(
4
), pp.
625
631
.
140.
Wang
,
C.
,
Su
,
K.
,
Wan
,
W.
,
Guo
,
H.
,
Zhou
,
H.
,
Chen
,
J.
,
Zhang
,
X.
, and
Huang
,
Y.
,
2014
, “
High Sulfur Loading Composite Wrapped by 3D Nitrogen-Doped Graphene as a Cathode Material for Lithium–Sulfur Batteries
,”
J. Mater. Chem. A
,
2
(
14
), p.
5018
.
141.
Babu
,
G.
, and
Reddy Arava
,
L. M.
,
2015
, “
Graphene-Decorated Graphite–Sulfur Composite as a High-Tap-Density Electrode for Li-S Batteries
,”
RSC Adv.
,
5
(
59
), pp.
47621
47627
.
142.
Fu
,
Y.
, and
Manthiram
,
A.
,
2012
, “
Orthorhombic Bipyramidal Sulfur Coated With Polypyrrole Nanolayers As a Cathode Material for Lithium–Sulfur Batteries
,”
J. Phys. Chem. C
,
116
(
16
), pp.
8910
8915
.
143.
Fu
,
Y.
, and
Manthiram
,
A.
,
2012
, “
Core-Shell Structured Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries
,”
RSC Adv.
,
2
(
14)
, p.
5927
.
144.
Wei Seh
,
Z.
,
Li
,
W.
,
Cha
,
J. J.
,
Zheng
,
G.
,
Yang
,
Y.
,
McDowell
,
M. T.
,
Hsu
,
P.-C.
, and
Cui
,
Y.
,
2013
, “
Sulphur-TiO2 Yolk-Shell Nanoarchitecture With Internal Void Space for Long-Cycle Lithium-Sulphur Batteries
,”
Nat. Commun.
,
4
, p.
1331
.
145.
Lee
,
K. T.
,
Black
,
R.
,
Yim
,
T.
,
Ji
,
X.
, and
Nazar
,
L. F.
,
2012
, “
Surface-Initiated Growth of Thin Oxide Coatings for Li-Sulfur Battery Cathodes
,”
Adv. Energy Mater.
,
2
(
12
), pp.
1490
1496
.
146.
Xin
,
S.
,
Gu
,
L.
,
Zhao
,
N.-H.
,
Yin
,
Y.-X.
,
Zhou
,
L.-J.
,
Guo
,
Y.-G.
, and
Wan
,
L.-J.
,
2012
, “
Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries
,”
J. Am. Chem. Soc.
,
134
(
45
), pp.
18510
18513
.
147.
Su
,
Y.-S.
, and
Manthiram
,
A.
,
2012
, “
Lithium-Sulphur Batteries With a Microporous Carbon Paper as a Bifunctional Interlayer
,”
Nat. Commun.
,
3
, p.
1166
.
148.
Wu
,
F.
,
Li
,
J.
,
Tian
,
Y.
,
Su
,
Y.
,
Wang
,
J.
,
Yang
,
W.
, and
Li
,
N.
,
2015
, “
3D Coral-Like Nitrogen-Sulfur Co-Doped Carbon-Sulfur Composite for High Performance Lithium-Sulfur Batteries
,”
Sci. Rep.
,
5
, pp. 13340–13349.
149.
Lee
,
S.-K.
,
Oh
,
S.-M.
,
Park
,
E.
,
Scrosati
,
B.
,
Hassoun
,
J.
,
Park
,
M.-S.
,
Kim
,
Y.-J.
,
Kim
,
H.
,
Belharouak
,
I.
, and
Sun
,
Y.-K.
,
2015
, “
Highly Cyclable Lithium–Sulfur Batteries With a Dual-Type Sulfur Cathode and a Lithiated Si/SiOx Nanosphere Anode
,”
Nano Lett.
,
15
(
5
), pp.
2863
2868
.
150.
Song
,
M. K.
,
Zhang
,
Y.
, and
Cairns
,
E. J.
,
2013
, “
A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach to Enhancing Cell Performance
,”
Nano Lett.
,
13
(
12
), pp.
5891
5899
.
151.
Aurbach
,
D.
,
Lu
,
Z.
,
Schechter
,
A.
,
Gofer
,
Y.
,
Gizbar
,
H.
,
Turgeman
,
R.
,
Cohen
,
Y.
,
Moshkovich
,
M.
, and
Levi
,
E.
,
2000
, “
Prototype Systems for Rechargeable Magnesium Batteries
,”
Nature
,
407
(
6805
), pp.
724
727
.
152.
Singh
,
N.
,
Arthur
,
T. S.
,
Ling
,
C.
,
Matsui
,
M.
, and
Mizuno
,
F.
,
2013
, “
A High Energy-Density Tin Anode for Rechargeable Magnesium-Ion Batteries
,”
Chem. Commun.
,
49
(
2
), pp.
149
151
.
153.
Hamlen
,
R. P.
,
Jerabek
,
E. C.
,
Ruzzo
,
J. C.
, and
Siwek
,
E. G.
,
1969
, “
Anodes for Refuelable Magnesium-Air Batteries
,”
J. Electrochem. Soc.
,
116
(
11
), p.
1588
.
154.
Ayre
,
J.
,
2015
, “
Bosch Solid-State Lithium-Ion Batteries Could Hit EV Market Within 5 Years
,” EV Obsession, The Netherlands, UK, accessed June 29, 2016, http://cleantechnica.com/2015/09/21/bosch-solid-state-lithium-ion-batteries-could-hit-ev-market-within-5-years/
155.
Kane, M., 2014, “
Toyota Continues To Move Forward With Solid State Battery Developments
,” InsideEVs, Como, Italy, accessed Jan. 30, 2015, http://insideevs.com/toyota-continues-move-forward-solid-state-battery-developments/
156.
Tokyo Institute of Technology, 2016, “
Solid Electrolytes Open Doors to Solid-State Batteries
,” Physorg, UK, accessed Jan. 2, 2017, https://phys.org/news/2016-03-solid-electrolytes-doors-solid-state-batteries.html
157.
Kobayashi
,
R.
,
Hayashi
,
K.
, and
Sugita
,
S.
,
2011
, “
Secondary Batteries and Fuel Cells for Telecommunication Facilities With Improved Tolerance to Power Outages
,” NTT Technical Review,
13
(1).
158.
Park
,
M.
,
Zhang
,
X.
,
Chung
,
M.
,
Less
,
G. B.
, and
Sastry
,
A. M.
,
2010
, “
A Review of Conduction Phenomena in Li-Ion Batteries
,”
J. Power Sources
,
195
(
24
), pp.
7904
7929
.
159.
Mehrotra
,
A.
,
Ross
,
P. N.
, and
Srinivasan
,
V.
,
2014
, “
Quantifying Polarization Losses in an Organic Liquid Electrolyte/Single Ion Conductor Interface
,”
J. Electrochem. Soc.
,
161
(
10
), pp.
A1681
A1690
.
160.
Knauth
,
P.
,
2009
, “
Inorganic Solid Li Ion Conductors: An Overview
,”
Solid State Ionics
,
180
(
14–16
), pp.
911
916
.
161.
Yin
,
S.-C.
,
Grondey
,
H.
,
Strobel
,
P.
,
Huang
,
H.
, and
Nazar
,
L. F.
,
2003
, “
Charge Ordering in Lithium Vanadium Phosphates: Electrode Materials for Lithium-Ion Batteries
,”
J. Am. Chem. Soc.
,
125
(
2
), pp.
326
327
.
162.
Kim
,
D.-G.
,
Shim
,
J.
,
Lee
,
J. H.
,
Kwon
,
S.-J.
,
Baik
,
J.-H.
, and
Lee
,
J.-C.
,
2013
, “
Preparation of Solid-State Composite Electrolytes Based on Organic/Inorganic Hybrid Star-Shaped Polymer and PEG-Functionalized POSS for All-Solid-State Lithium Battery Applications
,”
Polymer
,
54
(
21
), pp.
5812
5820
.
163.
Kotobuki
,
M.
, and
Kanamura
,
K.
,
2013
, “
Fabrication of All-Solid-State Battery Using Li5La3Ta2O12 Ceramic Electrolyte
,”
Ceram. Int.
,
39
(
6
), pp.
6481
6487
.
164.
Jin
,
Y.
, and
McGinn
,
P. J.
,
2013
, “
Bulk Solid State Rechargeable Lithium Ion Battery Fabrication With Al-Doped Li7La3Zr2O12 Electrolyte and Cu0.1V2O5 Cathode
,”
Electrochim. Acta
,
89
, pp.
407
412
.
165.
Jak
,
M. J. G.
,
Kelder
,
E. M.
, and
Schoonman
,
J.
,
1999
, “
Defect Structure of Li-Doped BPO4: A Nanostructured Ceramic Electrolyte for Li-Ion Batteries
,”
J. Solid State Chem.
,
142
(
1
), pp.
74
79
.
166.
Meikhall
,
M. S.
,
Gohar
,
I. A.
, and
Megahed
,
A. A.
,
1993
, “
Lithium Borosilicate Glasses as Electrolyte for Solid State Batteries
,”
J. Phys. D: Appl. Phys.
,
26
(
7
), pp.
1125
1129
.
167.
Kumar
,
B.
,
Kumar
,
J.
,
Leese
,
R.
,
Fellner
,
J. P.
,
Rodrigues
,
S. J.
, and
Abraham
,
K. M.
,
2010
, “
A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery
,”
J. Electrochem. Soc.
,
157
(
1
), p.
A50
.
168.
Kim
,
J. G.
,
Son
,
B.
,
Mukherjee
,
S.
,
Schuppert
,
N.
,
Bates
,
A.
,
Kwon
,
O.
,
Choi
,
M. J.
,
Chung
,
H. Y.
, and
Park
,
S.
,
2015
, “
A Review of Lithium and Non-Lithium Based Solid State Batteries
,”
J. Power Sources
,
282
, pp.
299
322
.
169.
Wang
,
J.
,
Li
,
Y.
, and
Sun
,
X.
,
2013
, “
Challenges and Opportunities of Nanostructured Materials for Aprotic Rechargeable Lithium-Air Batteries
,”
Nano Energy
,
2
(
4
), pp.
443
467
.
170.
Capsoni
,
D.
,
Bini
,
M.
,
Ferrari
,
S.
,
Quartarone
,
E.
, and
Mustarelli
,
P.
,
2012
, “
Recent Advances in the Development of Li-Air Batteries
,”
J. Power Sources
,
220
, pp.
253
263
.
171.
Kwabi
,
D. G.
,
Ortiz-Vitoriano
,
N.
,
Freunberger
,
S. A.
,
Chen
,
Y.
,
Imanishi
,
N.
,
Bruce
,
P. G.
, and
Shao-Horn
,
Y.
,
2014
, “
Materials Challenges in Rechargeable Lithium-Air Batteries
,”
MRS Bull.
,
39
(
5
), pp.
443
452
.
172.
Akhtar
,
N.
, and
Akhtar
,
W.
,
2015
, “
Prospects, Challenges, and Latest Developments in Lithium-Air Batteries
,”
Int. J. Energy Res.
,
39
(
3
), pp.
303
316
.
173.
Zhong, Y., 2011, “
Lithium-Air Batteries: An Overview
,” Stanford University Courses, Stanford, CA, accessed Jan. 30, 2015, http://large.stanford.edu/courses/2011/ph240/zhong2/
174.
Lu
,
J.
, and
Amine
,
K.
,
2013
, “
Recent Research Progress on Non-Aqueous Lithium-Air Batteries From Argonne National Laboratory
,”
Energies
,
6
(
11
), pp.
6016
6044
.
175.
Zhang
,
L.-L.
,
Wang
,
Z.-L.
,
Xu
,
D.
,
Zhang
,
X.-B.
, and
Wang
,
L.-M.
,
2013
, “
The Development and Challenges of Rechargeable Non-Aqueous Lithium-Air Batteries
,”
Int. J. Smart Nano Mater.
,
4
(
1
), pp.
27
46
.
176.
Balaish
,
M.
,
Kraytsberg
,
A.
, and
Ein-Eli
,
Y.
,
2014
, “
A Critical Review on Lithium-Air Battery Electrolytes
,”
Phys. Chem. Chem. Phys.
,
16
(
7
), pp.
2801
2822
.
177.
Ma
,
Z.
,
Yuan
,
X.
,
Li
,
L.
,
Ma
,
Z.-F.
,
Wilkinson
,
D. P.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2015
, “
A Review of Cathode Materials and Structures for Rechargeable Lithium-Air Batteries
,”
Energy Environ. Sci.
,
8
(8), pp. 2144–2198.
178.
Aleshin
,
G. Y.
,
Semenenko
,
D. A.
,
Belova
,
A. I.
,
Zakharchenko
,
T. K.
,
Itkis
,
D. M.
,
Goodilin
,
E. A.
, and
Tretyakov
,
Y. D.
,
2011
, “
Protected Anodes for Lithium-Air Batteries
,”
Solid State Ionics
,
184
(
1
), pp.
62
64
.
179.
Kumar
,
B.
,
Kichambare
,
P.
,
Rodrigues
,
S.
,
Kumar
,
J.
, and
Keil
,
R. G.
,
2011
, “
Lisicon Glass-Ceramics Mediated Catalysis of Oxygen Reduction
,”
Electrochem. Solid-State Lett.
,
14
(
6
), p.
A97
.
180.
Zheng
,
J. P.
,
Andrei
,
P.
,
Hendrickson
,
M.
, and
Plichta
,
E. J.
,
2011
, “
The Theoretical Energy Densities of Dual-Electrolytes Rechargeable Li-Air and Li-Air Flow Batteries
,”
J. Electrochem. Soc.
,
158
(
1
), p.
A43
.
181.
Park
,
J. E.
,
Lee
,
G.-H.
,
Choi
,
M.
,
Dar
,
M. A.
,
Shim
,
H.-W.
, and
Kim
,
D.-W.
,
2015
, “
Comparison of Catalytic Performance of Different Types of Graphene in Li-O2 Batteries
,”
J. Alloys Compd.
,
647
, pp.
231
237
.
182.
Xiao
,
J.
,
Wang
,
D.
,
Xu
,
W.
,
Wang
,
D.
,
Williford
,
R. E.
,
Liu
,
J.
, and
Zhang
,
J.-G.
,
2010
, “
Optimization of Air Electrode for Li/Air Batteries
,”
J. Electrochem. Soc.
,
157
(
4
), p.
A487
.
183.
Shitta-Bey
,
G. O.
,
Mirzaeian
,
M.
, and
Hall
,
P. J.
,
2012
, “
The Electrochemical Performance of Phenol-Formaldehyde Based Activated Carbon Electrodes for Lithium/Oxygen Batteries
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
A315
A320
.
184.
Mitchell
,
R. R.
,
Gallant
,
B. M.
,
Thompson
,
C. V.
, and
Shao-Horn
,
Y.
,
2011
, “
All-Carbon-Nanofiber Electrodes for High-Energy Rechargeable Li–O2 Batteries
,”
Energy Environ. Sci.
,
4
(
8
), p.
2952
.
185.
Li
,
Y.
, and
Dai
,
H.
,
2014
, “
Recent Advances in Zinc–Air Batteries
,”
Chem. Soc. Rev.
,
43
(
15
), pp.
5257
5275
.
186.
Lee
,
J.-S.
,
Tai Kim
,
S.
,
Cao
,
R.
,
Choi
,
N.-S.
,
Liu
,
M.
,
Lee
,
K. T.
, and
Cho
,
J.
,
2011
, “
Metal-Air Batteries With High Energy Density: Li-Air Versus Zn-Air
,”
Adv. Energy Mater.
,
1
(
1
), pp.
34
50
.
187.
Arai
,
H.
,
2015
, “
Metal Storage/Metal Air (Zn, Fe, Al, Mg)
,”
Electrochemical Energy Storage for Renewable Sources and Grid Balancing
,
Elsevier
, Amsterdam, The Netherlands, pp.
337
344
.
188.
Hueso
,
K. B.
,
Armand
,
M.
, and
Rojo
,
T.
,
2013
, “
High Temperature Sodium Batteries: Status, Challenges and Future Trends
,”
Energy Environ. Sci.
,
6
(
3
), p.
734
.
189.
Rand
,
D. A. J.
,
2015
,
Electrochemical Energy Storage for Renewable Sources and Grid Balancing
,
Elsevier
, Amsterdam, The Netherlands.
190.
Adelhelm
,
P.
,
Hartmann
,
P.
,
Bender
,
C. L.
,
Busche
,
M.
,
Eufinger
,
C.
, and
Janek
,
J.
,
2015
, “
From Lithium to Sodium: Cell Chemistry of Room Temperature Sodium–Air and Sodium–Sulfur Batteries
,”
Beilstein J. Nanotechnol.
,
6
, pp.
1016
1055
.
191.
Yabuuchi
,
N.
,
Kubota
,
K.
,
Dahbi
,
M.
, and
Komaba
,
S.
,
2014
, “
Research Development on Sodium-Ion Batteries
,”
Chem. Rev.
,
114
(
23
), pp.
11636
11682
.
192.
Tomazic
,
G.
, and
Skyllas-Kazacos
,
M.
,
2015
,
Electrochemical Energy Storage for Renewable Sources and Grid Balancing
,
Elsevier, Amsterdam
, The Netherlands.
193.
Li
,
B.
,
Nie
,
Z.
,
Vijayakumar
,
M.
,
Li
,
G.
,
Liu
,
J.
,
Sprenkle
,
V.
, and
Wang
,
W.
,
2015
, “
Ambipolar Zinc-Polyiodide Electrolyte for a High-Energy Density Aqueous Redox Flow Battery
,”
Nat. Commun.
,
6
, p.
6303
.
194.
Xie, X., 2011, “
Vanadium Redox-Flow Battery
,” Stanford University Courses, Stanford, CA, accessed Jan. 3, 2017, http://large.stanford.edu/courses/2011/ph240/xie2/
195.
J. M. E.
Corporation
, 2009, “
Lithium Ion Capacitor
,” JM Energy, Yamanashi, Japan, accessed Mar. 10, 2015, http://www.jmenergy.co.jp/en/product_whats.html
196.
Frackowiak
,
E.
,
Abbas
,
Q.
, and
Béguin
,
F.
,
2013
, “
Carbon/Carbon Supercapacitors
,”
J. Energy Chem.
,
22
(
2
), pp.
226
240
.
197.
Simon
,
P.
, and
Gogotsi
,
Y.
,
2008
, “
Materials for Electrochemical Capacitors
,”
Nat. Mater.
,
7
(
11
), pp.
845
854
.
198.
Burke
,
A.
,
2007
, “
R&D Considerations for the Performance and Application of Electrochemical Capacitors
,”
Electrochim. Acta
,
53
(
3
), pp.
1083
1091
.
199.
Burke
,
A.
,
2010
, “
Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles
,”
Int. J. Energy Res.
,
34
(2), pp.
133
151
.
200.
Al Sakka
,
M.
,
Gualous
,
H.
, and
Omar
,
N.
,
2012
, “
Batteries and Supercapacitors for Electric Vehicles
,”
New Generation of Electric Vehicles
, InTech, Croatia, pp.
135
164
.
201.
Naguib
,
M.
,
Come
,
J.
,
Dyatkin
,
B.
,
Presser
,
V.
,
Taberna
,
P.-L.
,
Simon
,
P.
,
Barsoum
,
M. W.
, and
Gogotsi
,
Y.
,
2012
, “
MXene: A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries
,”
Electrochem. Commun.
,
16
(
1
), pp.
61
64
.
202.
Naoi
,
K.
, and
Simon
,
P.
,
2008
, “
New Materials and New Configurations for Advanced Electrochemical Capacitors
,”
J. Electrochem. Soc.
,
17
(6), pp. 34–37.
203.
Brousse
,
T.
,
Belanger
,
D.
, and
Long
,
J. W.
,
2015
, “
To Be or Not To Be Pseudocapacitive?
J. Electrochem. Soc.
,
162
(
5
), pp.
A5185
A5189
.
204.
Ronsmans
,
J.
, and
Lalande
,
B.
,
2016
, “
Combining Energy With Power: Lithium Ion Capacitors
,”
International Symposium on Power Electronics, Electrical Drives, Automation and Motion
(
SPEEDAM
), Capri, Italy, June 22–24.
205.
Omar
,
N.
,
Al Sakka
,
M.
,
Smekens
,
J.
, and
Van Mierlo
,
J.
,
2013
, “
Electric and Thermal Characterization of Advanced Hybrid Li-Ion Capacitor Rechargeable Energy Storage System
,”
IEEE 4th International Conference on Power Engineering, Energy and Electrical Drives
, pp.
1574
1580
.
206.
Amatucci
,
G. G.
,
Badway
,
F.
,
Du Pasquier
,
A.
, and
Zheng
,
T.
,
2001
, “
An Asymmetric Hybrid Nonaqueous Energy Storage Cell
,”
J. Electrochem. Soc.
,
148
(
8
), p.
A930
.
207.
Burke
,
A.
,
Liu
,
Z.
, and
Zhao
,
H.
,
2014
, “
Present and Future Applications of Supercapacitors in Electric and Hybrid Vehicles
,”
IEEE International Electric Vehicle Conference
(
IEVC
), Florence, Italy, Dec. 16–19, pp. 1–8.
208.
Yunasko
, 2015, “
Development of Lithium-Ion Capacitors
,” Yunasko, accessed Sept. 15, 2016, http://yunasko.com/images/data/YUNASKO_Datasheet_LIC.pdf
209.
Naoi
,
K.
,
Naoi
,
W.
,
Aoyagi
,
S.
,
Miyamoto
,
J. I.
, and
Kamino
,
T.
,
2013
, “
New Generation ‘Nanohybrid Supercapacitor’
,”
Acc. Chem. Res.
,
46
(
5
), pp.
1075
1083
.
210.
Duval
,
M.
,
2004
,
Advanced Batteries for Electric Vehicles
,
EPRI
, Palo Alto, CA, Vol.
33
, p.
146
.
211.
International Energy Agency
,
2015
, “
Global EV Outlook 2015 Key Takeaways
,” GEO, Paris, France, pp.
9
10
.
212.
Randall
,
T.
,
2016
, “
Here's How Electric Cars Will Cause the Next Oil Crisis
,” Bloomberg, New York, accessed Mar. 25, 2016, http://www.bloomberg.com/features/2016-ev-oil-crisis/
213.
Vikström
,
H.
,
Davidsson
,
S.
, and
Höök
,
M.
,
2013
, “
Lithium Availability and Future Production Outlooks
,”
Appl. Energy
,
110
, pp.
252
266
.
214.
Oliveira
,
L.
,
Messagie
,
M.
,
Rangaraju
,
S.
,
Sanfelix
,
J.
,
Hernandez Rivas
,
M.
, and
Van Mierlo
,
J.
,
2015
, “
Key Issues of Lithium-Ion Batteries–From Resource Depletion to Environmental Performance Indicators
,”
J. Clean. Prod.
,
108
(Pt. A), pp.
354
362
.
215.
Goedkoop
,
M.
,
Heijungs
,
R.
,
Huijbregts
,
M.
,
De Schryver
,
A.
,
Struijs
,
J.
, and
Van Zelm
,
R.
,
2009
, “
ReCiPE 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level
,” http://www.lcia-recipe.net
216.
Majeau-Bettez
,
G.
,
Hawkins
,
T. R.
,
Strømman
,
A. H.
, and
Bettez
,
G. M.
,
2011
, “
Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles
,”
Environ. Sci. Technol.
,
45
(
10
), pp.
4548
4554
.
217.
Notter
,
D. A.
,
Gauch
,
M.
,
Widmer
,
R.
,
Wäger
,
P.
,
Stamp
,
A.
,
Zah
,
R.
, and
Althaus
,
H.-J.
,
2010
, “
Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles
,”
Environ. Sci. Technol.
,
44
(
17
), pp.
6550
6556
.
218.
Aanderman
,
D. M. M.
, and
Kalhammer
,
F. R.
,
2000
, “
Advanced Batteries for Electric Vehicles: An Assessment of Performance, Cost, and Availability
,” Technical Report, State of California Air Resources Board Sacramento.
219.
Cluzel C., and Douglas C.,
2012
, “
Element Energy Limited. Cost and Performance of EV Batteries
,” Final Report for the Committee on Climate Change, Cambridge, UK.
220.
Pillot
,
C.
,
2012
, “
HEV, P-HEV, and EV Market 2011–2025
,”
EEVC-2012
.
221.
Gonzalez
,
F.
, 2016, “
Advanced and Post Lithium-Ion Batteries 2016–2026: Technologies, Markets, Forecasts: IDTechEx
,” IDtechEx, Cambridge, UK, accessed May 17, 2016, http://www.idtechex.com/research/reports/advanced-and-post-lithium-ion-batteries-2016-2026-technologies-markets-forecasts-000449.asp?viewopt=showall
You do not currently have access to this content.