The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can be a strong function of ion-blockage effect and pore phase transport resistance. Even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.

References

References
1.
Wagner
,
R.
,
Preschitschek
,
N.
,
Passerini
,
S.
,
Leker
,
J.
, and
Winter
,
M.
,
2013
, “
Current Research Trends and Prospects Among the Various Materials and Designs Used in Lithium-Based Batteries
,”
J. Appl. Electrochem.
,
43
(
5
), pp.
481
496
.
2.
Whittingham
,
M. S.
,
2004
, “
Lithium Batteries and Cathode Materials
,”
Chem. Rev.
,
104
(
10
), pp.
4271
4302
.
3.
Ellis
,
B. L.
,
Lee
,
K. T.
, and
Nazar
,
L. F.
,
2010
, “
Positive Electrode Materials for Li-Ion and Li-Batteries
,”
Chem. Mater.
,
22
(
3
), pp.
691
714
.
4.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
5.
Cairns
,
E. J.
, and
Albertus
,
P.
,
2010
, “
Batteries for Electric and Hybrid-Electric Vehicles
,”
Annu. Rev. Chem. Biomol. Eng.
,
1
(
1
), pp.
299
320
.
6.
Chen
,
Y.-H.
,
Wang
,
C.-W.
,
Zhang
,
X.
, and
Sastry
,
A. M.
,
2010
, “
Porous Cathode Optimization for Lithium Cells: Ionic and Electronic Conductivity, Capacity, and Selection of Materials
,”
J. Power Sources
,
195
(
9
), pp.
2851
2862
.
7.
Siddique
,
N.
,
Salehi
,
A.
, and
Liu
,
F.
,
2012
, “
Stochastic Reconstruction and Electrical Transport Studies of Porous Cathode of Li-Ion Batteries
,”
J. Power Sources
,
217
, pp.
437
443
.
8.
Zheng
,
H.
,
Liu
,
G.
,
Song
,
X.
,
Ridgway
,
P.
,
Xun
,
S.
, and
Battaglia
,
V. S.
,
2010
, “
Cathode Performance as a Function of Inactive Material and Void Fractions
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
A1060
A1066
.
9.
Liu
,
G.
,
Zheng
,
H.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2012
, “
Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
A214
A221
.
10.
Zheng
,
H.
,
Yang
,
R.
,
Liu
,
G.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2012
, “
Cooperation Between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode
,”
J. Phys. Chem. C
,
116
(
7
), pp.
4875
4882
.
11.
Dillon
,
S. J.
, and
Sun
,
K.
,
2012
, “
Microstructural Design Considerations for Li-Ion Battery Systems
,”
Curr. Opin. Solid State Mater. Sci.
,
16
(
4
), pp.
153
162
.
12.
Arthur
,
T. S.
,
Bates
,
D. J.
,
Cirigliano
,
N.
,
Johnson
,
D. C.
,
Malati
,
P.
,
Mosby
,
J. M.
,
Perre
,
E.
,
Rawls
,
M. T.
,
Prieto
,
A. L.
, and
Dunn
,
B.
,
2011
, “
Three-Dimensional Electrodes and Battery Architectures
,”
MRS Bull.
,
36
(
07
), pp.
523
531
.
13.
Zheng
,
H.
,
Li
,
J.
,
Song
,
X.
,
Liu
,
G.
, and
Battaglia
,
V. S.
,
2012
, “
A Comprehensive Understanding of Electrode Thickness Effects on the Electrochemical Performances of Li-Ion Battery Cathodes
,”
Electrochim. Acta
,
71
, pp.
258
265
.
14.
Singh
,
M.
,
Kaiser
,
J.
, and
Hahn
,
H.
,
2015
, “
Thick Electrodes for High Energy Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
A1196
A1201
.
15.
Xiang
,
X.
,
Li
,
X.
, and
Li
,
W.
,
2013
, “
Preparation and Characterization of Size-Uniform Li[Li0.131Ni0.304Mn0.565]O2 Particles as Cathode Materials for High Energy Lithium Ion Battery
,”
J. Power Sources
,
230
, pp.
89
95
.
16.
Kwon
,
N. H.
,
2013
, “
The Effect of Carbon Morphology on the LiCoO2 Cathode of Lithium Ion Batteries
,”
Solid State Sci.
,
21
, pp.
59
65
.
17.
Chen
,
Y.-H.
,
Wang
,
C.-W.
,
Liu
,
G.
,
Song
,
X.-Y.
,
Battaglia
,
V. S.
, and
Sastry
,
A. M.
,
2007
, “
Selection of Conductive Additives in Li-Ion Battery Cathodes a Numerical Study
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A978
A986
.
18.
Kenney
,
B.
,
Darcovich
,
K.
,
McNeil
,
D. D.
, and
Davidson
,
I. J.
,
2012
, “
Modelling the Impact of Variations in Electrode Manufacturing on Lithium-Ion Battery Modules
,”
J. Power Sources
,
213
, pp.
391
401
.
19.
Liu
,
G.
,
Zheng
,
H.
,
Kim
,
S.
,
Deng
,
Y.
,
Minor
,
A. M.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2008
, “
Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-Ion Composite Cathode
,”
J. Electrochem. Soc.
,
155
(
12
), pp.
A887
A892
.
20.
Park
,
M.
,
Zhang
,
X.
,
Chung
,
M.
,
Less
,
G. B.
, and
Sastry
,
A. M.
,
2010
, “
A Review of Conduction Phenomena in Li-Ion Batteries
,”
J. Power Sources
,
195
(
24
), pp.
7904
7929
.
21.
Smith
,
K.
, and
Wang
,
C.-Y.
,
2006
, “
Solid-State Diffusion Limitations on Pulse Operation of a Lithium Ion Cell for Hybrid Electric Vehicles
,”
J. Power Sources
,
161
(
1
), pp.
628
639
.
22.
Cho
,
S.
,
Chen
,
C.-F.
, and
Mukherjee
,
P. P.
,
2015
, “
Influence of Microstructure on Impedance Response in Intercalation Electrodes
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
A1202
A1214
.
23.
Chen
,
C.-F.
, and
Mukherjee
,
P. P.
,
2015
, “
Probing the Morphological Influence on Solid Electrolyte Interphase and Impedance Response in Intercalation Electrodes
,”
Phys. Chem. Chem. Phys.
,
17
(
15
), pp.
9812
9827
.
24.
Ender
,
M.
,
Joos
,
J.
,
Carrarro
,
T.
, and
Ivers-Tiffee
,
E.
,
2012
, “
Quantitative Characterization of LiFePO4 Cathodes Reconstructed by FIB/SEM Tomography
,”
J. Electrochem. Soc.
,
159
(
7
), pp.
A972
A980
.
25.
Rahani
,
E. K.
, and
Shenoy
, V
. B.
,
2013
, “
Role of Plastic Deformation of Binder on Stress Evolution During Charging and Discharging in Lithium-Ion Battery Negative Electrodes
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
A1153
A1162
.
26.
Takahashi
,
K.
,
Higa
,
K.
,
Mair
,
S.
,
Chintapalli
,
M.
,
Balsara
,
N.
, and
Srinivasan
,
V.
,
2016
, “
Mechanical Degradation of Graphite/PVDF Composite Electrodes: A Model-Experimental Study
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
A385
A395
.
27.
Newman
,
J.
, and
Tiedemann
,
W.
,
1975
, “
Porous‐Electrode Theory With Battery Applications
,”
AIChE J.
,
21
(
1
), pp.
25
41
.
28.
Newman
,
J. S.
, and
Tobias
,
C. W.
,
1962
, “
Theoretical Analysis of Current Distribution in Porous Electrodes
,”
J. Electrochem. Soc.
,
109
(
12
), pp.
1183
1191
.
29.
Mukherjee
,
P. P.
,
Pannala
,
S.
, and
Turner
,
J. A.
,
2011
, “
Modeling and Simulation of Battery Systems
,”
Handbook of Battery Materials
,
2nd ed.
,
Wiley-VCH
,
Weinheim, Germany
, pp.
841
875
.
30.
Chung
,
D.-W.
,
Ebner
,
M.
,
Ely
,
D. R.
,
Wood
,
V.
, and
Garcia
,
R. E.
,
2013
, “
Validity of the Bruggeman Relation for Porous Electrodes
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
7
), p.
074009
.
31.
Math2Market
,
2011
, “
GeoDict
,”
Fraunhofer ITWM
, Kaiserslautern, Germany.
32.
Wiegmann
,
A.
,
2001–2010
, “
GEODICT Virtual Micro Structure Simulator and Material Property Predictor
,” www.geodict.com
33.
Santhanagopalan
,
S.
,
Guo
,
Q.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2006
, “
Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries
,”
J. Power Sources
,
156
(
2
), pp.
620
628
.
34.
Newman
,
J.
, and
Thomas-Alyea
,
K. E.
,
2012
,
Electrochemical Systems
,
Wiley
,
Hoboken, NJ
.
35.
Stewart
,
S. G.
,
Srinivasan
,
V.
, and
Newman
,
J.
,
2008
, “
Modeling the Performance of Lithium-Ion Batteries and Capacitors During Hybrid-Electric-Vehicle Operation
,”
J. Electrochem. Soc.
,
155
(
9
), pp.
A664
A671
.
36.
Valøen
,
L. O.
, and
Reimers
,
J. N.
,
2005
, “
Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes
,”
J. Electrochem. Soc.
,
152
(
5
), pp.
A882
A891
.
37.
Ji
,
Y.
,
Zhang
,
Y.
, and
Wang
,
C.-Y.
,
2013
, “
Li-Ion Cell Operation at Low Temperatures
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A636
A649
.
38.
Liu
,
G.
,
Zheng
,
H.
,
Simens
,
A. S.
,
Minor
,
A. M.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2007
, “
Optimization of Acetylene Black Conductive Additive and PVDF Composition for High-Power Rechargeable Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
154
(
12
), pp.
A1129
A1134
.
You do not currently have access to this content.