Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, and thermal phenomena of lithium-ion batteries at the mesoscale. We review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.

References

References
1.
Abada
,
S.
,
Marlair
,
G.
,
Lecocq
,
A.
,
Petit
,
M.
,
Sauvant-Moynot
,
V.
, and
Huet
,
F.
,
2016
, “
Safety Focused Modeling of Lithium-Ion Batteries: A Review
,”
J. Power Sources
,
306
, pp.
178
192
.
2.
Arora
,
P.
,
White
,
R. E.
, and
Doyle
,
M.
,
1998
, “
Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
145
(
10
), pp.
3647
3667
.
3.
Rubino
,
R. S.
,
Gan
,
H.
, and
Takeuchi
,
E. S.
,
2001
, “
A Study of Capacity Fade in Cylindrical and Prismatic Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
148
(
9
), pp.
1029
1033
.
4.
Wright
,
R.
,
Christophersen
,
J.
,
Motloch
,
C.
,
Belt
,
J.
,
Ho
,
C.
,
Battaglia
,
V.
,
Barnes
,
J.
,
Duong
,
T.
, and
Sutula
,
R.
,
2003
, “
Power Fade and Capacity Fade Resulting From Cycle-Life Testing of Advanced Technology Development Program Lithium-Ion Batteries
,”
J. Power Sources
,
119
, pp.
865
869
.
5.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2014
, “
Stress Evolution and Capacity Fade in Constrained Lithium-Ion Pouch Cells
,”
J. Power Sources
,
245
, pp.
745
751
.
6.
Snyder
,
C.
,
Apblett
,
C.
,
Grillet
,
A.
,
Beechem
,
T.
, and
Duquette
,
D.
,
2016
, “
Measuring Li+ Inventory Losses in LiCoO2/Graphite Cells Using Raman Microscopy
,”
J. Electrochem. Soc.
,
163
(
6
), pp.
1036
1041
.
7.
Yan
,
B.
,
Lim
,
C.
,
Yin
,
L.
, and
Zhu
,
L.
,
2012
, “
Three Dimensional Simulation of Galvanostatic Discharge of LiCoO2 Cathode Based on X-ray Nano-CT Images
,”
J. Electrochem. Soc.
,
159
(
10
), pp.
1604
1614
.
8.
Hutzenlaub
,
T.
,
Thiele
,
S.
,
Zengerle
,
R.
, and
Ziegler
,
C.
,
2012
, “
Three-Dimensional Reconstruction of a LiCoO2 Li-Ion Battery Cathode
,”
Electrochem. Solid-State Lett.
,
15
(
3
), pp.
33
36
.
9.
Sethuraman
,
V. A.
,
Nguyen
,
A.
,
Chon
,
M. J.
,
Nadimpalli
,
S. P. V.
,
Wang
,
H.
,
Abraham
,
D. P.
,
Bower
,
A. F.
,
Shenoy
,
V. B.
, and
Guduru
,
P. R.
,
2013
, “
Stress Evolution in Composite Silicon Electrodes During Lithiation/Delithiation
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A739
A746
.
10.
Liu
,
Z.
,
Chen-Wiegart
,
Y.-C. K.
,
Wang
,
J.
,
Barnett
,
S. A.
, and
Faber
,
K. T.
,
2016
, “
Three-Phase 3D Reconstruction of a LiCoO2 Cathode Via FIB-SEM Tomography
,”
Microsc. Microanal.
,
22
(
2
), pp.
140
148
.
11.
Reimers
,
J. N.
, and
Dahn
,
J. R.
,
1992
, “
Electrochemical and In Situ X-ray Diffraction Studies of Lithium Intercalation in LixCoO2
,”
J. Electrochem. Soc.
,
139
(
8
), pp.
2091
2097
.
12.
Diercks
,
D. R.
,
Musselman
,
M.
,
Morgenstern
,
A.
,
Wilson
,
T.
,
Kumar
,
M.
,
Smith
,
K.
,
Kawase
,
M.
,
Gorman
,
B. P.
,
Eberhart
,
M.
, and
Packard
,
C. E.
,
2014
, “
Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical Heterogeneity in Cycled LiCoO2
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
3039
3045
.
13.
Seo
,
J. H.
,
Chung
,
M.
,
Park
,
M.
,
Han
,
S. W.
,
Zhang
,
X.
, and
Sastry
,
A. M.
,
2011
, “
Generation of Realistic Particle Structures and Simulations of Internal Stress: A Numerical/AFM Study of LiMn2O4 Particles
,”
J. Electrochem. Soc.
,
158
(
4
), pp.
434
442
.
14.
Miller
,
D. J.
,
Proff
,
C.
,
Wen
,
J. G.
,
Abraham
,
D. P.
, and
Bareo
,
J.
,
2013
, “
Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy
,”
Adv. Energy Mater.
,
3
(
8
), pp.
1098
1103
.
15.
Ebner
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2013
, “
Visualization and Quantification of Electrochemical and Mechanical Degradation in Li-Ion Batteries
,”
Science
,
342
(
6159
), pp.
716
720
.
16.
Takahashi
,
K.
,
Higa
,
K.
,
Mair
,
S.
,
Chintapalli
,
M.
,
Balsara
,
N.
, and
Srinivasan
,
V.
,
2016
, “
Mechanical Degradation of Graphite/PVDF Composite Electrodes: A Model-Experimental Study
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
385
395
.
17.
Chen
,
C.-F.
,
Barai
,
P.
,
Smith
,
K.
, and
Mukherjee
,
P. P.
,
2016
, “
Scaling Relations for Intercalation Induced Damage in Electrodes
,”
Electrochim. Acta
,
204
, pp.
31
49
.
18.
Zhang
,
X.
,
Shyy
,
W.
, and
Sastry
,
A. M.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
910
916
.
19.
Zhang
,
X.
,
Sastry
,
A. M.
, and
Shyy
,
W.
,
2008
, “
Intercalation-Induced Stress and Heat Generation Within Single Lithium-Ion Battery Cathode Particles
,”
J. Electrochem. Soc.
,
155
(
7
), pp.
A542
A552
.
20.
Woodford
,
W. H.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2010
, “
“Electrochemical shock” of Intercalation Electrodes: A Fracture Mechanics Analysis
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
1052
1059
.
21.
Park
,
J.
,
Lu
,
W.
, and
Sastry
,
A. M.
,
2011
, “
Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles Due to Coupled Phase Transition and Intercalation
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
201
206
.
22.
Miehe
,
C.
,
Dal
,
H.
,
Schänzel
,
L.-M.
, and
Raina
,
A.
,
2016
, “
A Phase-Field Model for Chemo-Mechanical Induced Fracture in Lithium-Ion Battery Electrode Particles
,”
Int. J. Numer. Methods Eng.
,
106
(
9
), pp.
683
711
.
23.
Renganathan
,
S.
,
Sikha
,
G.
,
Santhanagopalan
,
S.
, and
White
,
R. E.
,
2010
, “
Theoretical Analysis of Stresses in a Lithium Ion Cell
,”
J. Electrochem. Soc.
,
157
(
2
), pp.
155
163
.
24.
Goldin
,
G. M.
,
Colclasure
,
A. M.
,
Wiedemann
,
A. H.
, and
Kee
,
R. J.
,
2012
, “
Three-Dimensional Particle-Resolved Models of Li-Ion Batteries to Assist the Evaluation of Empirical Parameters in One-Dimensional Models
,”
Electrochim. Acta
,
64
, pp.
118
129
.
25.
Purkayastha
,
R.
, and
McMeeking
,
R.
,
2012
, “
An Integrated 2D Model of a Lithium Ion Battery: The Effect of Material Parameters and Morphology on Storage Particle Stress
,”
Comput. Mech.
,
50
(
2
), pp.
209
227
.
26.
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2012
, “
A Simple Finite Element Model of Diffusion, Finite Deformation, Plasticity and Fracture in Lithium Ion Insertion Electrode Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
4
), p.
045004
.
27.
Rahani
,
E. K.
, and
Shenoy
,
V. B.
,
2013
, “
Role of Plastic Deformation of Binder on Stress Evolution During Charging and Discharging in Lithium-Ion Battery Negative Electrodes
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
1153
1162
.
28.
Stershic
,
A.
,
Simunovic
,
S.
, and
Nanda
,
J.
,
2015
, “
Modeling the Evolution of Lithium-Ion Particle Contact Distributions Using a Fabric Tensor Approach
,”
J. Power Sources
,
297
, pp.
540
550
.
29.
Less
,
G. B.
,
Seo
,
J. H.
,
Han
,
S.
,
Sastry
,
A. M.
,
Zausch
,
J.
,
Latz
,
A.
,
Schmidt
,
S.
,
Wieser
,
C.
,
Kehrwald
,
D.
, and
Fell
,
S.
,
2012
, “
Micro-Scale Modeling of Li-Ion Batteries: Parameterization and Validation
,”
J. Electrochem. Soc.
,
159
(
6
), pp.
697
704
.
30.
Lim
,
C.
,
Yan
,
B.
,
Yin
,
L.
, and
Zhu
,
L.
,
2012
, “
Simulation of Diffusion-Induced Stress Using Reconstructed Electrodes Particle Structures Generated by Micro/Nano-CT
,”
Electrochim. Acta
,
75
, pp.
279
287
.
31.
Ebner
,
M.
,
Geldmacher
,
F.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2013
, “
X-ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes
,”
Adv. Energy Mater.
,
3
(
7
), pp.
845
850
.
32.
Gross
,
T.
, and
Hess
,
C.
,
2014
, “
Spatially-Resolved In Situ Raman Analysis of LiCoO2 Electrodes
,”
ECS Trans.
,
61
(
12
), pp.
1
9
.
33.
Babu
,
S. K.
,
Mohamed
,
A. I.
,
Whitacre
,
J. F.
, and
Litster
,
S.
,
2015
, “
Multiple Imaging Mode X-ray Computed Tomography for Distinguishing Active and Inactive Phases in Lithium-Ion Battery Cathodes
,”
J. Power Sources
,
283
, pp.
314
319
.
34.
Liu
,
H.
,
Foster
,
J. M.
,
Gully
,
A.
,
Krachkovskiy
,
S.
,
Jiang
,
M.
,
Wu
,
Y.
,
Yang
,
X.
,
Protas
,
B.
,
Goward
,
G. R.
, and
Botton
,
G. A.
,
2016
, “
Three-Dimensional Investigation of Cycling-Induced Microstructural Changes in Lithium-Ion Battery Cathodes Using Focused Ion Beam/Scanning Electron Microscopy
,”
J. Power Sources
,
306
, pp.
300
308
.
35.
Lagadec
,
M. F.
,
Ebner
,
M.
,
Zahn
,
R.
, and
Wood
,
V.
,
2016
, “
Technique for Visualization and Quantification of Lithium-Ion Battery Separator Microstructure
,”
J. Electrochem. Soc.
,
163
(
6
), pp.
992
994
.
36.
Malavé
,
V.
,
Berger
,
J. R.
,
Zhu
,
H.
, and
Kee
,
R. J.
,
2014
, “
A Computational Model of the Mechanical Behavior Within Reconstructed LixCoO2 Li-Ion Battery Cathode Particles
,”
Electrochim. Acta
,
130
, pp.
707
717
.
37.
Malavé
,
V.
,
Berger
,
J. R.
, and
Kee
,
R. J.
,
2014
, “
The Influence of Crystallographic Orientation on the Chemo-Elastic Response of Reconstructed LixCoO2 Cathode Particles
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
3156
3163
.
38.
Trembacki
,
B.
,
Vadakkepatt
,
A.
,
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
2013
, “
A Coupled Finite Volume Method for Particle Scale Electrochemical Modeling of Lithium-Ion Batteries
,”
ASME
Paper No. IMECE2013-65774.
39.
Wiedemann
,
A. H.
,
Goldin
,
G. M.
,
Barnett
,
S. A.
,
Zhu
,
H.
, and
Kee
,
R. J.
,
2013
, “
Effects of Three-Dimensional Cathode Microstructure on the Performance of Lithium-Ion Battery Cathodes
,”
Electrochim. Acta
,
88
, pp.
580
588
.
40.
Hutzenlaub
,
T.
,
Thiele
,
S.
,
Paust
,
N.
,
Spotnitz
,
R.
,
Zengerle
,
R.
, and
Walchshofer
,
C.
,
2014
, “
Three-Dimensional Electrochemical Li-Ion Battery Modelling Featuring a Focused Ion-Beam/Scanning Electron Microscopy Based Three-Phase Reconstruction of a LiCoO2 Cathode
,”
Electrochim. Acta
,
115
, pp.
131
139
.
41.
Cooper
,
S.
,
Eastwood
,
D.
,
Gelb
,
J.
,
Damblanc
,
G.
,
Brett
,
D.
,
Bradley
,
R.
,
Withers
,
P.
,
Lee
,
P.
,
Marquis
,
A.
,
Brandon
,
N.
, and
Shearing
,
P.
,
2014
, “
Image Based Modelling of Microstructural Heterogeneity in LiFePO4 Electrodes for Li-Ion Batteries
,”
J. Power Sources
,
247
, pp.
1033
1039
.
42.
Chen-Wiegart
,
Y. K.
,
DeMike
,
R.
,
Erdonmez
,
C.
,
Thornton
,
K.
,
Barnett
,
S. A.
, and
Wang
,
J.
,
2014
, “
Tortuosity Characterization of 3D Microstructure at Nano-Scale for Energy Storage and Conversion Materials
,”
J. Power Sources
,
249
, pp.
349
356
.
43.
Lee
,
S.
,
Sastry
,
A. M.
, and
Park
,
J.
,
2016
, “
Study on Microstructures of Electrodes in Lithium-Ion Batteries Using Variational Multi-Scale Enrichment
,”
J. Power Sources
,
315
, pp.
96
110
.
44.
Kashkooli
,
A. G.
,
Farhad
,
S.
,
Lee
,
D. U.
,
Feng
,
K.
,
Litster
,
S.
,
Babu
,
S. K.
,
Zhu
,
L.
, and
Chen
,
Z.
,
2016
, “
Multiscale Modeling of Lithium-Ion Battery Electrodes Based on Nano-Scale X-ray Computed Tomography
,”
J. Power Sources
,
307
, pp.
496
509
.
45.
Reinholz
,
E. L.
,
Roberts
,
S. A.
,
Apblett
,
C. A.
,
Lechman
,
J. B.
, and
Schunk
,
P. R.
,
2016
, “
Composition and Manufacturing Effects on Electrical Conductivity of Li/FeS2 Thermal Battery Cathodes
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
A1723
A1729
.
46.
Roberts
,
S. A.
,
Brunini
,
V. E.
,
Long
,
K. N.
, and
Grillet
,
A. M.
,
2014
, “
A Framework for Three-Dimensional Mesoscale Modeling of Anisotropic Swelling and Mechanical Deformation in Lithium-Ion Electrodes
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
3052
3059
.
47.
Mendoza
,
H.
,
Roberts
,
S. A.
,
Brunini
,
V. E.
, and
Grillet
,
A. M.
,
2016
, “
Mechanical and Electrochemical Response of a LiCoO2 Cathode Using Reconstructed Microstructures
,”
Electrochim. Acta
,
190
, pp.
1
15
.
48.
Doyle
,
M.
, and
Fuentes
,
Y.
,
2003
, “
Computer Simulations of a Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs
,”
J. Electrochem. Soc.
,
150
(
6
), pp.
A706
A713
.
49.
Menetrier
,
M.
,
Saadoune
,
I.
,
Levasseur
,
S.
, and
Delmas
,
C.
,
1999
, “
The Insulator-Metal Transition Upon Lithium Deintercalation From LiCoO2: Electronic Properties and 7Li NMR Study
,”
J. Mater. Chem.
,
9
(
5
), pp.
1135
1140
.
50.
Grillet
,
A. M.
,
Humplik
,
T.
,
Stirrup
,
E. K.
,
Roberts
,
S. A.
,
Barringer
,
D. A.
,
Snyder
,
C. M.
,
Janvrin
,
M.
, and
Apblett
,
C. A.
,
2016
, “
Conductivity Degradation of Polyvinylidene Fluoride Binder During Mechanical Cycling: Measurements and Simulations for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
A1859
A1871
.
51.
Gotcu-Freis
,
P.
,
Cupid
,
D. M.
,
Rohde
,
M.
, and
Seifert
,
H. J.
,
2015
, “
New Experimental Heat Capacity and Enthalpy of Formation of Lithium Cobalt Oxide
,”
J. Chem. Thermodyn.
,
84
, pp.
118
127
.
52.
Vadakkepatt
,
A.
,
Trembacki
,
B.
,
Mathur
,
S. R.
, and
Murthy
,
J. Y.
,
2016
, “
Bruggeman's Exponents for Effective Thermal Conductivity of Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
A1
A12
.
53.
Zhao
,
J.
,
Wang
,
L.
,
He
,
X.
,
Wan
,
C.
, and
Jiang
,
C.
,
2008
, “
Determination of Lithium-Ion Transference Numbers in LiPF6-PC Solutions Based on Electrochemical Polarization and NMR Measurements
,”
J. Electrochem. Soc.
,
155
(
4
), pp.
A292
A296
.
54.
Bockris
,
J. O.
, and
Reddy
,
A. K. N.
,
2012
,
Modern Electrochemistry: An Introduction to an Interdisciplinary Area
, Plenum Press, New York.
55.
Noble
,
D. R.
,
Newren
,
E. P.
, and
Lechman
,
J. B.
,
2010
, “
A Conformal Decomposition Finite Element Method for Modeling Stationary Fluid Interface Problems
,”
Int. J. Numer. Methods Fluids
,
63
(
6
), pp.
725
742
.
56.
Kramer
,
R. M. J.
, and
Noble
,
D. R.
,
2014
, “
A Conformal Decomposition Finite Element Method for Arbitrary Discontinuities on Moving Interfaces
,”
Int. J. Numer. Methods Eng.
,
100
(
2
), pp.
87
110
.
57.
SIERRA Thermal/Fluid Development Team
,
2016
, “
SIERRA Multimechanics Module: Aria User Manual—Version 4.40
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2016-4159
.
58.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3647
3679
.
59.
Mendoza
,
H.
,
Trembacki
,
B. L.
, and
Roberts
,
S. A.
,
2016
, “
Application of the Conformal Decomposition Finite Element Method to Simulations on Complex Microstructure Reconstructions
,” (in preparation).
60.
Zhu
,
M.
,
Park
,
J.
, and
Sastry
,
A. M.
,
2012
, “
Fracture Analysis of the Cathode in Li-Ion Batteries: A Simulation Study
,”
J. Electrochem. Soc.
,
159
(
4
), pp.
492
498
.
61.
Garrick
,
T. R.
,
Kanneganti
,
K.
,
Huang
,
X.
, and
Weidner
,
J. W.
,
2014
, “
Modeling Volume Change Due to Intercalation Into Porous Electrodes
,”
J. Electrochem. Soc.
,
161
(
8
), pp.
E3297
E3301
.
62.
Nishizawa
,
M.
, and
Yamamura
,
S.
,
1998
, “
Irreversible Conductivity Change of Li1-CoO2 on Electrochemical Lithium Insertion/Extraction, Desirable for Battery Applications
,”
Chem. Commun.
,
16
, pp.
1631
1632
.
63.
Jaiser
,
S.
,
Müller
,
M.
,
Baunach
,
M.
,
Bauer
,
W.
,
Scharfer
,
P.
, and
Schabel
,
W.
,
2016
, “
Investigation of Film Solidification and Binder Migration During Drying of Li-Ion Battery Anodes
,”
J. Power Sources
,
318
, pp.
210
219
.
64.
Grillet
,
A. M.
, and
El Gabaly
,
F.
,
2014
, “
LiCoO2 Crystal Orientation Analysis
,” personal communication.
65.
Turner
,
J.
,
Allu
,
S.
,
Berrill
,
M.
,
Elwasif
,
W.
,
Kalnaus
,
S.
,
Kumar
,
A.
,
Lebrun-Grandie
,
D.
,
Pannala
,
S.
, and
Simunovic
,
S.
,
2015
, “
Safer Batteries Through Coupled Multiscale Modeling
,”
Proc. Comput. Sci.
,
51
, pp.
1168
1177
.
66.
ORNL CAEBAT Team,
2016
, “
Virtual Integrated Battery Environment (VIBE)
,” Oak Ridge National Laboratory, Oak Ridge, TN, http://batterysim.org/
67.
Zhang
,
W.-J.
,
2011
, “
A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries
,”
J. Power Sources
,
196
(
1
), pp.
13
24
.
You do not currently have access to this content.