This perspective paper underscores the importance of coupled electro-mechanical studies in lithium battery systems with a specific example given of the interaction between temperature-dependent dendrite morphologies and polymer separators. Polymer separators are passive components in lithium battery systems yet play a critical role in cell safety. Separators must maintain dimensional stability to provide electronic isolation of the active electrodes and resist puncture and penetration from lithium dendrites. The polyolefin class of polymers has been used extensively for this application with mixed success. Recent research efforts to characterize lithium dendrite formation and growth have shown distinct temperature-dependent dendrite morphologies: rounded blunt mushroom-shaped, sharp jagged needle-like, and granular particulates. Each of these dendrite morphologies will induce a difference physical interaction with the polymer separator. Anticipating this interaction is difficult since the mechanical properties of the polymer separator itself are largely temperature dependent. This paper describes the anticipated physical interaction of the three different dendrite morphologies listed above as a function of temperature and the local physical properties of the commercial polymer separator. A discussion is also provided on the utility of estimating local mechanical properties in the electrochemical battery environment from traditional mechanical and thermomechanical measurements made in the laboratory.

References

References
1.
Chen
,
J.
,
Yan
,
Y.
,
Sun
,
T.
,
Qi
,
Y.
, and
Li
,
X.
,
2014
, “
Deformation and Fracture Behaviors of Microporous Polymer Separators for Lithium Ion Batteries
,”
RSC Adv.
,
4
(
29
), pp.
14904
14914
.
2.
Huang
,
X. S.
, and
Hitt
,
J.
,
2013
, “
Lithium Ion Battery Separators: Development and Performance Characterization of a Composite Membrane
,”
J. Membr. Sci.
,
425–426
, pp.
163
168
.
3.
Plaimer
,
M.
,
Breitfuss
,
C.
,
Sinz
,
W.
,
Heindl
,
S. F.
,
Ellersdorfer
,
C.
,
Steffan
,
H.
,
Wilkening
,
M.
,
Hennige
,
V.
,
Tatschl
,
R.
,
Geier
,
A.
,
Schramm
,
C.
, and
Freunberger
,
S. A.
,
2016
, “
Evaluating the Trade-Off Between Mechanical and Electrochemical Performance of Separators for Lithium-Ion Batteries: Methodology and Application
,”
J. Power Sources
,
306
, pp.
702
710
.
4.
Xu
,
J.
,
Wang
,
L.
,
Guan
,
J.
, and
Yin
,
S.
,
2016
, “
Coupled Effect of Strain Rate and Solvent on Dynamic Mechanical Behaviors of Separators in Lithium Ion Batteries
,”
Mater. Des.
,
95
, pp.
319
328
.
5.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2013
, “
Ion Transport Restriction in Mechanically Strained Separator Membranes
,”
J. Power Sources
,
226
, pp.
149
155
.
6.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2014
, “
State of Health and Charge Measurements in Lithium-Ion Batteries Using Mechanical Stress
,”
J. Power Sources,
.
269
, pp.
7
14
.
7.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2014
, “
Stress Evolution and Capacity Fade in Constrained Lithium-Ion Pouch Cells
,”
J. Power Sources
,
245
, pp.
745
751
.
8.
Cannarella
,
J.
,
Liu
,
X. Y.
,
Leng
,
C. Z.
,
Sinko
,
P. D.
,
Gor
,
G. Y.
, and
Arnold
,
C. B.
,
2014
, “
Mechanical Properties of a Battery Separator Under Compression and Tension
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
F3117
F3122
.
9.
Love
,
C. T.
,
2011
, “
Thermomechanical Analysis and Durability of Commercial Micro-Porous Polymer Li-Ion Battery Separators
,”
J. Power Sources
,
196
(
5
), pp.
2905
2912
.
10.
Gor
,
G. Y.
,
Cannarella
,
J.
,
Leng
,
C. Z.
,
Vishnyakov
,
A.
, and
Arnold
,
C. B.
,
2015
, “
Swelling and Softening of Lithium-Ion Battery Separators in Electrolyte Solvents
,”
J. Power Sources
,
294
, pp.
167
172
.
11.
Takahashi
,
K.
,
Higa
,
K.
,
Mair
,
S.
,
Chintapalli
,
M.
,
Balsara
,
N.
, and
Srinivasan
,
V.
,
2016
, “
Mechanical Degradation of Graphite/PVDF Composite Electrodes: A Model-Experimental Study
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
A385
A395
.
12.
Love
,
C. T.
,
Baturina
,
O. A.
, and
Swider-Lyons
,
K. E.
,
2015
, “
Observation of Lithium Dendrites at Ambient Temperature and Below
,”
ECS Electrochem. Lett.
,
4
(
2
), pp.
A24
A27
.
13.
Liu
,
B.
,
Feng
,
X.
, and
Zhang
,
S. M.
,
2009
, “
The Effective Young's Modulus of Composites Beyond the Voigt Estimation Due to the Poisson Effect
,”
Compos. Sci. Technol.
,
69
(
13
), pp.
2198
2204
.
14.
Monroe
,
C.
, and
Newman
,
J.
,
2005
, “
The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
,”
J. Electrochem. Soc.
,
152
(
2
), pp.
A396
A404
.
15.
Winter
,
M.
,
2016
, “
The Periodic Table by Web Elements
,”
University of Sheffield and WebElements, Ltd.
, Sheffield, UK.
16.
Menard
,
K. P.
,
1999
,
Dynamic Mechanical Analysis: A Practical Introduction
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.