Present research deals with multiphysics, pore-scale simulation of Li–O2 battery using multirelaxation time lattice Boltzmann method. A novel technique is utilized to generate an idealized electrode–electrolyte porous media from the known macroscopic variables. Present investigation focuses on the performance degradation of Li–O2 cell due to the blockage of the reaction sites via Li2O2 formation. Present simulations indicate that Li–air and Li–O2 batteries primarily suffer from mass transfer limitations. The study also emphasizes the importance of pore-scale simulations and shows that the morphology of the porous media has a significant impact on the cell performance. While lower porosity provides higher initial current, higher porosity maintains sustainable output.

References

References
1.
Yao
,
K.
,
Liang
,
R.
, and
Zheng
,
J.
,
2016
, “
Freestanding Flexible Si Nanoparticles–Multiwalled Carbon Nanotubes Composite Anodes for Li-Ion Batteries and Their Prelithiation by Stabilized Li Metal Powder
,”
J. Electrochem. Energy Convers. Storage
,
13
(
1
), p.
011004
.
2.
Gallagher
,
K. G.
,
Goebel
,
S.
,
Greszler
,
T.
,
Mathias
,
M.
,
Oelerich
,
W.
,
Eroglu
,
D.
, and
Srinivasan
,
V.
,
2014
, “
Quantifying the Promise of Lithium–Air Batteries for Electric Vehicles
,”
Energy Environ. Sci.
,
7
(
5
), pp.
1555
1563
.
3.
Armand
,
M.
, and
Tarascon
,
J.-M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
4.
Yang Ze
,
Z. W.
,
Shen
,
Y.
,
Yuan
,
L.-X.
, and
Huang
,
Y.-H.
,
2016
, “
Next-Generation Energy Storage Technologies and Their Key Electrode Materials
,”
Acta Phys. Chim. Sin.
,
32
(
5
), pp.
1062
1071
.
5.
Peng
,
Z.
,
Freunberger
,
S. A.
,
Chen
,
Y.
, and
Bruce
,
P. G.
,
2012
, “
A Reversible and Higher-Rate Li–O2 Battery
,”
Science
,
337
(
6094
), pp.
563
566
.
6.
Christensen
,
J.
,
Albertus
,
P.
,
Sanchez-Carrera
,
R. S.
,
Lohmann
,
T.
,
Kozinsky
,
B.
,
Liedtke
,
R.
,
Ahmed
,
J.
, and
Kojic
,
A.
,
2011
, “
A Critical Review of Li/Air Batteries
,”
J. Electrochem. Soc.
,
159
(
2
), pp.
R1
R30
.
7.
Laoire
,
C. O.
,
Mukerjee
,
S.
,
Abraham
,
K.
,
Plichta
,
E. J.
, and
Hendrickson
,
M. A.
,
2010
, “
Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium− Air Battery
,”
J. Phys. Chem. C
,
114
(
19
), pp.
9178
9186
.
8.
Chen
,
Y.
,
Freunberger
,
S. A.
,
Peng
,
Z.
,
Fontaine
,
O.
, and
Bruce
,
P. G.
,
2013
, “
Charging a Li–O2 Battery Using a Redox Mediator
,”
Nat. Chem.
,
5
(
6
), pp.
489
494
.
9.
Gwak
,
G.
, and
Ju
,
H.
,
2016
, “
Three-Dimensional Transient Modeling of a Non-Aqueous Electrolyte Lithium-Air Battery
,”
Electrochimica Acta
,
201
, pp.
395
409
.
10.
Viswanathan
,
V.
,
Thygesen
,
K. S.
,
Hummelshøj
,
J.
,
Nørskov
,
J. K.
,
Girishkumar
,
G.
,
McCloskey
,
B.
, and
Luntz
,
A.
,
2011
, “
Electrical Conductivity in Li2O2 and Its Role in Determining Capacity Limitations in Non-Aqueous Li–O2 Batteries
,”
J. Chem. Phys.
,
135
(
21
), p.
214704
.
11.
Andersen
,
C. P.
,
Hu
,
H.
,
Qiu
,
G.
,
Kalra
,
V.
, and
Sun
,
Y.
,
2015
, “
Pore-Scale Transport Resolved Model Incorporating Cathode Microstructure and Peroxide Growth in Lithium-Air Batteries
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
A1135
A1145
.
12.
Sahapatsombut
,
U.
,
Cheng
,
H.
, and
Scott
,
K.
,
2013
, “
Modelling the Micro–Macro Homogeneous Cycling Behaviour of a Lithium–Air Battery
,”
J. Power Sources
,
227
, pp.
243
253
.
13.
Read
,
J.
,
Mutolo
,
K.
,
Ervin
,
M.
,
Behl
,
W.
,
Wolfenstine
,
J.
,
Driedger
,
A.
, and
Foster
,
D.
,
2003
, “
Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery
,”
J. Electrochem. Soc.
,
150
(
10
), pp.
A1351
A1356
.
14.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond
,
Oxford University Press
,
New York
.
15.
Wolf-Gladrow
,
D. A.
,
2000
,
Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction
,
Springer Science & Business Media
,
Berlin
.
16.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Ann. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
17.
Gao
,
Y.
,
Zhang
,
X.
,
Rama
,
P.
,
Chen
,
R.
,
Ostadi
,
H.
, and
Jiang
,
K.
,
2012
, “
An Improved MRT Lattice Boltzmann Model for Calculating Anisotropic Permeability of Compressed and Uncompressed Carbon Cloth Gas Diffusion Layers Based on X-Ray Computed Micro-Tomography
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
4
), p.
041010
.
18.
Liu
,
Q.
,
He
,
Y.-L.
,
Li
,
Q.
, and
Tao
,
W.-Q.
,
2014
, “
A Multiple-Relaxation-Time Lattice Boltzmann Model for Convection Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
73
, pp.
761
775
.
19.
Guo
,
Z.
, and
Zhao
,
T.
,
2005
, “
A Lattice Boltzmann Model for Convection Heat Transfer in Porous Media
,”
Numer. Heat Transfer, Part B
,
47
(
2
), pp.
157
177
.
20.
Pan
,
C.
,
Luo
,
L.-S.
, and
Miller
,
C. T.
,
2006
, “
An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation
,”
Comput. Fluids
,
35
(
8
), pp.
898
909
.
21.
Contrino
,
D.
,
Lallemand
,
P.
,
Asinari
,
P.
, and
Luo
,
L.-S.
,
2014
, “
Lattice-Boltzmann Simulations of the Thermally Driven 2D Square Cavity at High Rayleigh Numbers
,”
J. Comput. Phys.
,
275
, pp.
257
272
.
22.
Lu
,
Y.-C.
,
Kwabi
,
D. G.
,
Yao
,
K. P.
,
Harding
,
J. R.
,
Zhou
,
J.
,
Zuin
,
L.
, and
Shao-Horn
,
Y.
,
2011
, “
The Discharge Rate Capability of Rechargeable Li–O2 Batteries
,”
Energy Environ. Sci.
,
4
(
8
), pp.
2999
3007
.
23.
Padbury
,
R.
, and
Zhang
,
X.
,
2011
, “
Lithium–Oxygen Batteries—Limiting Factors that Affect Performance
,”
J. Power Sources
,
196
(
10
), pp.
4436
4444
.
You do not currently have access to this content.