Understanding interfacial phenomena such as ion and electron transport at dynamic interfaces is crucial for revolutionizing the development of materials and devices for energy-related applications. Moreover, advances in this field would enhance the progress of related electrochemical interfacial problems in biology, medicine, electronics, and photonics, among others. Although significant progress is taking place through in situ experimentation, modeling has emerged as the ideal complement to investigate details at the electronic and atomistic levels, which are more difficult or impossible to be captured with current experimental techniques. Among the most important interfacial phenomena, side reactions occurring at the surface of the negative electrodes of Li-ion batteries, due to the electrochemical instability of the electrolyte, result in the formation of a solid-electrolyte interphase layer (SEI). In this work, we briefly review the main mechanisms associated with SEI reduction reactions of aprotic organic solvents studied by quantum mechanical methods. We then report the results of a Kinetic Monte Carlo method to understand the initial stages of SEI growth.

References

References
1.
Turner
,
J. A.
,
1999
, “
A Realizable Renewable Energy Future
,”
Science
,
285
(
5428
), pp.
687
689
.
2.
Gogotsi
,
Y.
, and
Simon
,
P.
,
2011
, “
True Performance Metrics in Electrochemical Energy Storage
,”
Science
,
334
(
6058
), pp.
917
918
.
3.
Goodenough
,
J. B.
, and
Kim
,
Y.
,
2010
, “
Challenges for Rechargeable Li Batteries
,”
Chem. Mat.
,
22
(
3
), pp.
587
603
.
4.
Aurbach
,
D.
,
Talyosef
,
Y.
,
Markovsky
,
B.
,
Markevich
,
E.
,
Zinigrad
,
E.
,
Asraf
,
L.
,
Gnanaraj
,
J. S.
, and
Kim
,
H. J.
,
2004
, “
Design of Electrolyte Solutions for Li and Li-Ion Batteries: A Review
,”
Electrochim. Acta
,
50
(
2–3
), pp.
247
254
.
5.
Schaffner
,
B.
,
Schaffner
,
F.
,
Verevkin
,
S. P.
, and
Borner
,
A.
,
2010
, “
Organic Carbonates as Solvents in Synthesis and Catalysis
,”
Chem. Rev.
,
110
(
8
), pp.
4554
4581
.
6.
Lewandowski
,
A.
, and
Swiderska-Mocek
,
A.
,
2009
, “
Ionic Liquids as Electrolytes for Li-Ion Batteries-An Overview of Electrochemical Studies
,”
J. Power Sources
,
194
(
2
), pp.
601
609
.
7.
Fergus
,
J. W.
,
2010
, “
Ceramic and Polymeric Solid Electrolytes for Lithium-Ion Batteries
,”
J. Power Sources
,
195
(
15
), pp.
4554
4569
.
8.
Xu
,
K.
,
2004
, “
Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
,”
Chem. Rev.
,
104
(
10
), pp.
4303
4417
.
9.
Zhang
,
S. S.
,
2006
, “
A Review on Electrolyte Additives for Lithium-Ion Batteries
,”
J. Power Sources
,
162
(
2
), pp.
1379
1394
.
10.
Wagner
,
R.
,
Preschitschek
,
N.
,
Passerini
,
S.
,
Leker
,
J.
, and
Winter
,
M.
,
2013
, “
Current Research Trends and Prospects Among the Various Materials and Designs Used in Lithium-Based Batteries
,”
J. Appl. Electrochem.
,
43
(
5
), pp.
481
496
.
11.
Aurbach
,
D.
,
2000
, “
Review of Selected Electrode-Solution Interactions Which Determine the Performance of Li and Li Ion Batteries
,”
J. Power Sources
,
89
(
2
), pp.
206
218
.
12.
Maeshima
,
H.
,
Moriwake
,
H.
,
Kuwabara
,
A.
, and
Fisher
,
C. A. J.
,
2010
, “
Quantitative Evaluation of Electrochemical Potential Windows of Electrolytes for Electric Double-Layer Capacitors Using AB Initio Calculations
,”
J. Electrochem. Soc.
,
157
(
6
), pp.
A696
A701
.
13.
Halls
,
M. D.
, and
Tasaki
,
K.
,
2010
, “
High-Throughput Quantum Chemistry and Virtual Screening for Lithium Ion Battery Electrolyte Additives
,”
J. Power Sources
,
195
(
5
), pp.
1472
1478
.
14.
Balbuena
,
P. B.
, and
Wang
,
Y. X.
,
2004
,
Lithium-Ion Batteries: Solid-Electrolyte Interphase
,
Imperial College Press
,
London
.
15.
Verma
,
P.
,
Maire
,
P.
, and
Novak
,
P.
,
2010
, “
A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries
,”
Electrochim. Acta
,
55
(
22
), pp.
6332
6341
.
16.
Peled
,
E.
,
1983
, “
Lithium Stability and Film Formation in Organic and Inorganic Electrolyte for Lithium Battery Systems
,”
Lithium Batteries
,
J. P.
Gabano
, ed.,
Academic Press
, London.
17.
Aurbach
,
D.
,
Moshkovich
,
M.
,
Cohen
,
Y.
, and
Schechter
,
A.
,
1999
, “
The Study of Surface Film Formation on Noble-Metal Electrodes in Alkyl Carbonates/Li Salt Solutions, Using Simultaneous In Situ AFM, EQCM, FTIR, and EIS
,”
Langmuir
,
15
(
8
), pp.
2947
2960
.
18.
Goodenough
,
J. B.
, and
Kim
,
Y.
,
2011
, “
Challenges for Rechargeable Batteries
,”
J. Power Sources
,
196
(
16
), pp.
6688
6694
.
19.
Xu
,
W.
,
Wang
,
J.
,
Ding
,
F.
,
Chen
,
X.
,
Nasybulin
,
E.
,
Zhang
,
Y.
, and
Zhang
,
J.-G.
,
2014
, “
Lithium Metal Anodes for Rechargeable Batteries
,”
Energy Environ. Sci.
,
7
(
2
), pp.
513
537
.
20.
Wu
,
H.
, and
Cui
,
Y.
,
2012
, “
Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries
,”
Nano Today
,
7
(
5
), pp.
414
429
.
21.
Tasaki
,
K.
,
Kanda
,
K.
,
Kobayashi
,
T.
,
Nakamura
,
S.
, and
Ue
,
M.
,
2006
, “
Theoretical Studies on the Reductive Decompositions of Solvents and Additives for Lithium-Ion Batteries Near Lithium Anodes
,”
J. Electrochem. Soc.
,
153
(
12
), pp.
A2192
A2197
.
22.
Wang
,
Y.
, and
Balbuena
,
P. B.
,
2002
, “
Theoretical Insights Into the Reductive Decompositions of Propylene Carbonate and Vinylene Carbonate: A Density Functional Theory Study
,”
J. Phys. Chem. B
,
106
(
17
), pp.
4486
4495
.
23.
Wang
,
Y.
,
Nakamura
,
S.
,
Ue
,
M.
, and
Balbuena
,
P. B.
,
2001
, “
Theoretical Studies to Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries: Reduction Mechanisms of Ethylene Carbonate
,”
J. Am. Chem. Soc.
,
123
(
47
), pp.
11708
11718
.
24.
Leung
,
K.
,
Qi
,
Y.
,
Zavadil
,
K. R.
,
Jung
,
Y. S.
,
Dillon
,
A. C.
,
Cavanagh
,
A. S.
,
Lee
,
S. H.
, and
George
,
S. M.
,
2011
, “
Using Atomic Layer Deposition to Hinder Solvent Decomposition in Lithium Ion Batteries: First-Principles Modeling and Experimental Studies
,”
J. Am. Chem. Soc.
,
133
(
37
), pp.
14741
14754
.
25.
Yu
,
J. M.
,
Balbuena
,
P. B.
,
Budzien
,
J.
, and
Leung
,
K.
,
2011
, “
Hybrid DFT Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate
,”
J. Electrochem. Soc.
,
158
(
4
), pp.
A400
A410
.
26.
Heyd
,
J.
,
Scuseria
,
G. E.
, and
Ernzerhof
,
M.
,
2006
, “
Hybrid Functionals Based on a Screened Coulomb Potential
,”
J. Chem. Phys.
,
118
(
18
), p
8207
.
27.
Leung
,
K.
,
2013
, “
Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries
,”
J. Phys. Chem. C
,
117
(
4
), pp.
1539
1547
.
28.
Kim
,
S. P.
,
van Duin
,
A. C. T.
, and
Shenoy
,
V. B.
,
2011
, “
Effect of Electrolytes on the Structure and Evolution of the Solid Electrolyte Interphase (SEI) in Li-Ion Batteries: A Molecular Dynamics Study
,”
J Power Sources
,
196
(
20
), pp.
8590
8597
.
29.
Soto
,
F. A.
,
Ma
,
Y.
,
Martinez-DeLaHoz
,
J. M.
,
Seminario
,
J. M.
, and
Balbuena
,
P. B.
,
2015
, “
Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries
,”
Chem. Mater.
,
27
(
23
), pp.
7990
8000
.
30.
Leung
,
K.
,
Soto
,
F. A.
,
Hankins
,
K.
,
Balbuena
,
P. B.
, and
Harrison
,
K. L.
,
2016
, “
Stability of Solid Electrolyte Interphase Components on Li Metal and Reactive Anode Material Surfaces
,”
J. Phys. Chem. C
,
120
(
12
), pp.
6302
6313
.
31.
Omichi
,
K.
,
Ramos-Sanchez
,
G.
,
Rao
,
R.
,
Pierce
,
N.
,
Chen
,
G.
,
Balbuena
,
P. B.
, and
Harutyunyan
,
A. R.
,
2015
, “
Origin of Excess Capacity in Lithium-Ion Batteries Based on Carbon Nanostructures
,”
J. Electrochem. Soc.
,
162
(
10
), pp.
A2106
A2115
.
32.
Leung
,
K.
,
2013
, “
Two-Electron Reduction of Ethylene Carbonate: A Quantum Chemistry Re-Examination of Mechanisms
,”
Chem. Phys. Lett.
,
568–569
, pp.
1
8
.
33.
Leung
,
K.
,
2012
, “
Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries
,”
J. Phys. Chem. C
,
117
(
4
), pp.
1539
1547
.
34.
Leung
,
K.
, and
Budzien
,
J. L.
,
2010
, “
Ab Initio Molecular Dynamics Simulations of the Initial Stages of Solid-Electrolyte Interphase Formation on Lithium Ion Battery Graphitic Anodes
,”
Phys. Chem. Chem. Phys.
,
12
(
25
), pp.
6583
6586
.
35.
Ganesh
,
P.
,
Kent
,
P. R. C.
, and
Jiang
,
D.-E.
,
2012
, “
Solid-Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights From First-Principles Molecular Dynamics
,”
J. Phys. Chem. C
,
116
(
46
), pp.
24476
24481
.
36.
Peled
,
E.
,
Towa
,
D. B.
,
Merson
,
A.
, and
Burstein
,
L.
,
2000
, “
Microphase Structure of SEI on HOPG
,”
J. New Mater. Electrochem. Syst.
,
3
(
4
), pp.
319
326
.
37.
Tasaki
,
K.
,
2005
, “
Solvent Decompositions and Physical Properties of Decomposition Compounds in Li-Ion Battery Electrolytes Studied by DFT Calculations and Molecular Dynamics Simulations
,”
J. Phys. Chem. B
,
109
(
7
), pp.
2920
2933
.
38.
Sun
,
H.
,
1998
, “
COMPASS, an ab Initio Force Field Optimized for Condensed-Phase Applications-Overview With Details on Alkane and Benzene Compounds
,”
J. Phys. Chem. A
,
102
(
38
), p.
7338
.
39.
Wang
,
Y. X.
, and
Balbuena
,
P. B.
,
2003
, “
Adsorption and 2-Dimensional Association of Lithium Alkyl Dicarbonates on the Graphite Surface through O-...Li+...p (Arene) Interactions
,”
J. Phys. Chem. B
,
107
(
23
), pp.
5503
5510
.
40.
Vatamanu
,
J.
,
Borodin
,
O.
, and
Smith
,
G. D.
,
2011
, “
Molecular Dynamics Simulation Studies of the Structure of a Mixed Carbonate/LiPF6 Electrolyte Near Graphite Surface as a Function of Electrode Potential
,”
J. Phys. Chem. C
,
116
(
1
), pp.
1114
1121
.
41.
Li
,
T.
, and
Balbuena
,
P. B.
,
2000
, “
Theoretical Studies of the Reduction of Ethylene Carbonate
,”
Chem. Phys. Lett.
,
317
(3–5), pp.
421
429
.
42.
Aurbach
,
D.
,
Levi
,
M. D.
,
Levi
,
E.
, and
Schechter
,
A.
,
1997
, “
Failure and Stabilization Mechanisms of Graphite Electrodes
,”
J. Phys. Chem. B
,
101
(
12
), pp.
2195
2206
.
43.
Jorn
,
R.
,
Kumar
,
R.
,
Abraham
,
D. P.
, and
Voth
,
G. A.
,
2013
, “
Atomistic Modeling of the Electrode-Electrolyte Interface in Li-Ion Energy Storage Systems: Electrolyte Structuring
,”
J. Phys. Chem. C
,
117
(
8
), pp.
3747
3761
.
44.
Zheng
,
J. Y.
,
Zheng
,
H.
,
Wang
,
R.
,
Ben
,
L. B.
,
Lu
,
W.
,
Chen
,
L. W.
,
Chen
,
L. Q.
, and
Li
,
H.
,
2014
, “
3D Visualization of Inhomogeneous Multi-Layered Structure and Young's Modulus of the Solid Electrolyte Interphase (SEI) on Silicon Anodes for Lithium Ion Batteries
,”
Phys. Chem. Chem. Phys.
,
16
(
26
), pp.
13229
13238
.
45.
Methekar
,
R. N.
,
Northrop
,
P. W. C.
,
Chen
,
K.
,
Braatz
,
R. D.
, and
Subramanian
,
V. R.
,
2011
, “
Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer Formation
,”
J. Electrochem. Soc.
,
158
(
4
), pp.
A363
A370
.
46.
Santhanagopalan
,
S.
,
Guo
,
Q.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2006
, “
Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries
,”
J. Power Sources
,
156
(
2
), pp.
620
628
.
47.
Sikha
,
G.
,
Popov
,
B. N.
, and
White
,
R. E.
,
2004
, “
Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery Theory
,”
J. Electrochem. Soc.
,
151
(
7
), pp.
A1104
A1114
.
48.
Subramanian
,
V. R.
,
Boovaragavan
,
V.
,
Ramadesigan
,
V.
, and
Arabandi
,
M.
,
2009
, “
Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions
,”
J. Electrochem. Soc.
,
156
(
4
), pp.
A260
A271
.
49.
Deng
,
J.
,
Wagner
,
G. J.
, and
Muller
,
R. P.
,
2013
, “
Phase Field Modeling of Solid Electrolyte Interface Formation in Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
160
(
3
), pp.
A487
A496
.
50.
Ploehn
,
H. J.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2004
, “
Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A456
A462
.
51.
Colclasure
,
A. M.
, and
Kee
,
R. J.
,
2010
, “
Thermodynamically Consistent Modeling of Elementary Electrochemistry in Lithium-Ion Batteries
,”
Electrochim. Acta
,
55
(
28
), pp.
8960
8973
.
52.
Colclasure
,
A. M.
,
Smith
,
K. A.
, and
Kee
,
R. J.
,
2011
, “
Modeling Detailed Chemistry and Transport for Solid-Electrolyte-Interface (SEI) Films in Li–Ion Batteries
,”
Electrochim. Acta
,
58
(
0
), pp.
33
43
.
53.
Christensen
,
J.
, and
Newman
,
J.
,
2004
, “
A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase
,”
J. Electrochem. Soc.
,
151
(
11
), pp.
A1977
A1988
.
54.
Pinson
,
M. B.
, and
Bazant
,
M. Z.
,
2013
, “
Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
A243
A250
.
55.
Yan
,
J.
,
Zhang
,
J.
,
Su
,
Y.-C.
,
Zhang
,
X.-G.
, and
Xia
,
B.-J.
,
2010
, “
A Novel Perspective on the Formation of the Solid Electrolyte Interphase on the Graphite Electrode for Lithium-Ion Batteries
,”
Electrochim. Acta
,
55
(
5
), pp.
1785
1794
.
56.
Yan
,
J.
,
Su
,
Y.-C.
,
Xia
,
B.-J.
, and
Zhang
,
J.
,
2009
, “
Thermodynamics in the Formation of the Solid Electrolyte Interface on the Graphite Electrode for Lithium-Ion Batteries
,”
Electrochim. Acta
,
54
(
13
), pp.
3538
3542
.
57.
Yan
,
J.
,
Xia
,
B.-J.
,
Su
,
Y.-C.
,
Zhou
,
X.-Z.
,
Zhang
,
J.
, and
Zhang
,
X.-G.
,
2008
, “
Phenomenologically Modeling the Formation and Evolution of the Solid Electrolyte Interface on the Graphite Electrode for Lithium-Ion Batteries
,”
Electrochim. Acta
,
53
(
24
), pp.
7069
7078
.
58.
Wang
,
L. G.
, and
Clancy
,
P.
,
2001
, “
Kinetic Monte Carlo Simulation of the Growth of Polycrystalline Cu Films
,”
Surf Sci
,
473
(
1–2
), pp.
25
38
.
59.
Wang
,
Z. Y.
,
Li
,
Y. H.
, and
Adams
,
J. B.
,
2000
, “
Kinetic Lattice Monte Carlo Simulation of Facet Growth Rate
,”
Surf Sci
,
450
(
1–2
), pp.
51
63
.
60.
Drews
,
T. O.
,
Braatz
,
R. D.
, and
Alkire
,
R. C.
,
2004
, “
Coarse-Grained Kinetic Monte Carlo Simulation of Copper Electrodeposition With Additives
,”
Int. J. Multiscale Comput. Eng.
,
2
(
2
), pp. 313–327.
61.
Li
,
X.
,
Drews
,
T. O.
,
Rusli
,
E.
,
Xue
,
F.
,
He
,
Y.
,
Braatz
,
R.
, and
Alkire
,
R.
,
2007
, “
Effect of Additives on Shape Evolution During Electrodeposition I. Multiscale Simulation With Dynamically Coupled Kinetic Monte Carlo and Moving-Boundry Finite-Volume Codes
,”
J. Electrochem. Soc.
,
154
(
4
), pp.
D230
D240
.
62.
Zheng
,
Z.
,
Stephens
,
R. M.
,
Braatz
,
R. D.
,
Alkire
,
R. C.
, and
Petzold
,
L. R.
,
2008
, “
A Hybrid Multiscale Kinetic Monte Carlo Method for Simulation of Copper Electrodeposition
,”
J. Comput. Phys.
,
227
(
10
), pp.
5184
5199
.
63.
Turner
,
C. H.
,
Zhang
,
Z. T.
,
Gelb
,
L. D.
, and
Dunlap
,
B. I.
,
2015
, “
Kinetic Monte Carlo Simulation of Electrochemical Systems
,”
Rev. Comput. Chem.
,
28
, pp.
175
204
.
64.
Aurbach
,
D.
,
Gofer
,
Y.
,
Ben-Zion
,
M.
, and
Aped
,
P.
,
1992
, “
The Behaviour of Lithium Electrodes in Propylene and Ethylene Carbonate: Te Major Factors that Influence Li Cycling Efficiency
,”
J. Electroanal. Chem.
,
339
(
1
), pp.
451
471
.
65.
Benitez
,
L.
,
Cristancho
,
D.
,
Seminario
,
J. M.
,
Martinez de la Hoz
,
J. M.
, and
Balbuena
,
P. B.
,
2014
, “
Electron Transfer Through Solid-Electrolyte Interphase Layers Formed on Si Anodes of Li-ion Batteries
,”
Electrochim. Acta
,
140
(SI), pp.
250
257
.
You do not currently have access to this content.