Particle size plays an important role in the electrochemical performance of cathodes for lithium-ion (Li-ion) batteries. High energy planetary ball milling of LiNi1/3Mn1/3Co1/3O2 (NMC) cathode materials was investigated as a route to reduce the particle size and improve the electrochemical performance. The effect of ball milling times, milling speeds, and composition on the structure and properties of NMC cathodes was determined. X-ray diffraction analysis showed that ball milling decreased primary particle (crystallite) size by up to 29%, and the crystallite size was correlated with the milling time and milling speed. Using relatively mild milling conditions that provided an intermediate crystallite size, cathodes with higher capacities, improved rate capabilities, and improved capacity retention were obtained within 14 μm-thick electrode configurations. High milling speeds and long milling times not only resulted in smaller crystallite sizes but also lowered electrochemical performance. Beyond reduction in crystallite size, ball milling was found to increase the interfacial charge transfer resistance, lower the electrical conductivity, and produce aggregates that influenced performance. Computations support that electrolyte diffusivity within the cathode and film thickness play a significant role in the electrode performance. This study shows that cathodes with improved performance are obtained through use of mild ball milling conditions and appropriately designed electrodes that optimize the multiple transport phenomena involved in electrochemical charge storage materials.

References

References
1.
Croy
,
J. R.
,
Balasubramanian
,
M.
,
Gallagher
,
K. G.
, and
Burrell
,
A. K.
,
2015
, “
Review of the U.S. Department of Energy's ‘Deep Dive’ Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes
,”
Acc. Chem. Res.
,
48
(
11
), pp.
2813
2821
.
2.
Nitta
,
N.
,
Wu
,
F. X.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
3.
Martha
,
S. K.
,
Sclar
,
H.
,
Framowitz
,
Z. S.
,
Kovacheva
,
D.
,
Saliyski
,
N.
,
Gofer
,
Y.
,
Sharon
,
P.
,
Golik
,
E.
,
Markovsky
,
B.
, and
Aurbach
,
D.
,
2009
, “
A Comparative Study of Electrodes Comprising Nanometric and Submicron Particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 Layered Compounds
,”
J. Power Sources
,
189
(
1
), pp.
248
255
.
4.
Ates
,
M. N.
,
Mukerjee
,
S.
, and
Abraham
,
K. M.
,
2015
, “
A High Rate Li-Rich Layered MNC Cathode Material for Lithium-Ion Batteries
,”
RSC Adv.
,
5
(
35
), pp.
27375
27386
.
5.
Zheng
,
H.
,
Tan
,
L.
,
Liu
,
G.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2012
, “
Calendering Effects on the Physical and Electrochemical Properties of Li[Ni1/3Mn1/3Co1/3]O2 Cathode
,”
J. Power Sources
,
208
, pp.
52
57
.
6.
Fuji
,
Y.
,
Miura
,
H.
,
Suzuki
,
N.
,
Shoji
,
T.
, and
Nakayama
,
N.
,
2007
, “
Structural and Electrochemical Properties of LiNi1/3Mn1/3Co1/3O2-LiMg1/3Co1/3Mn1/3O2 Solid Solutions
,”
Solid State Ion.
,
178
(
11–12
), pp.
849
857
.
7.
Liu
,
G.
,
Zheng
,
H.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2008
, “
Li[Ni1/3Mn1/3Co1/3]O2-Based Electrodes for PHEV Applications: An Optimization
,”
ECS Trans.
,
11
(
32
), pp.
1
9
.
8.
Cabana
,
J.
,
Zheng
,
H.
,
Shukla
,
A. K.
,
Kim
,
C.
,
Battaglia
,
V. S.
, and
Kunduraci
,
M.
,
2011
, “
Comparison of the Performance of LiNi1/2Mn3/2O4 With Different Microstructures
,”
J. Electrochem. Soc.
,
158
(
9
), pp.
A997
A1004
.
9.
Huang
,
Z.-D.
,
Liu
,
X.-M.
,
Zhang
,
B.
,
Oh
,
S.-W.
,
Ma
,
P.-C.
, and
Kim
,
J.-K.
,
2011
, “
LiNi1/3Mn1/3Co1/3O2 With a Novel One-Dimensional Porous Structure: A High-Power Cathode Material for Rechargeable Li-Ion Batteries
,”
Scr. Mater.
,
64
(
2
), pp.
122
125
.
10.
Liu
,
G.
,
Zheng
,
H.
,
Kim
,
S.
,
Deng
,
Y.
,
Minor
,
A. M.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2008
, “
Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-Ion Composite Cathode
,”
J. Electrochem. Soc.
,
155
(
12
), pp.
A887
A892
.
11.
Liu
,
G.
,
Zheng
,
H.
,
Simens
,
A. S.
,
Minor
,
A. M.
,
Song
,
X.
, and
Battaglia
,
V. S.
,
2007
, “
Optimization of Acetylene Black Conductive Additive and PVDF Composition for High-Power Rechargeable Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
154
(
12
), pp.
A1129
A1134
.
12.
Zheng
,
H.
,
Li
,
J.
,
Song
,
X.
,
Liu
,
G.
, and
Battaglia
,
V. S.
,
2012
, “
A Comprehensive Understanding of Electrode Thickness Effects on the Electrochemical Performances of Li-Ion Battery Cathodes
,”
Electrochim. Acta
,
71
, pp.
258
265
.
13.
Zheng
,
H. H.
,
Liu
,
G.
,
Song
,
X. Y.
,
Ridgway
,
P.
,
Xun
,
S. D.
, and
Battaglia
,
V. S.
,
2010
, “
Cathode Performance as a Function of Inactive Material and Void Fractions
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
A1060
A1066
.
14.
Fergus
,
J. W.
,
2010
, “
Recent Developments in Cathode Materials for Lithium Ion Batteries
,”
J. Power Sources
,
195
(
4
), pp.
939
954
.
15.
Thorat
,
I. V.
,
Joshi
,
T.
,
Zaghib
,
K.
,
Harb
,
J. N.
, and
Wheeler
,
D. R.
,
2011
, “
Understanding Rate-Limiting Mechanisms in LiFePO4 Cathodes for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
11
), pp.
A1185
A1193
.
16.
Pohjalainen
,
E.
,
Rauhala
,
T.
,
Vakeapaa
,
M.
,
Kallioinen
,
J.
, and
Kallio
,
T.
,
2015
, “
Effect of Li4Ti5O12 Particle Size on the Performance of Lithium Ion Battery Electrodes at High C-Rates and Low Temperatures
,”
J. Phys. Chem. C
,
119
(
5
), pp.
2277
2283
.
17.
Sclar
,
H.
,
Kovacheva
,
D.
,
Zhecheva
,
E.
,
Stoyanova
,
R.
,
Lavi
,
R.
,
Kimmel
,
G.
,
Grinblat
,
J.
,
Girshevitz
,
O.
,
Amalraj
,
F.
,
Haik
,
O.
,
Zinigrad
,
E.
,
Markovsky
,
B.
, and
Aurbach
,
D.
,
2009
, “
On the Performance of LiNi1/3Mn1/3Co1/3O2 Nanoparticles as a Cathode Material for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
156
(
11
), pp.
A938
A948
.
18.
Zhu
,
J. X.
,
Yoo
,
K.
,
Denduluri
,
A.
,
Hou
,
W. T.
,
Guo
,
J. C.
, and
Kisailus
,
D.
,
2015
, “
Crystal Structure and Size Effects on the Performance of LiNi1/3Mn1/3Co1/3O2 Cathodes
,”
J. Mater. Res.
,
30
(
2
), pp.
295
303
.
19.
Gusev
,
A. I.
, and
Kurlov
,
A. S.
,
2008
, “
Production of Nanocrystalline Powders by High-Energy Ball Milling: Model and Experiment
,”
Nanotechnology
,
19
(
26
), p.
8
.
20.
Salad
,
M.
,
Rezaee
,
M.
, and
Marashi
,
P.
,
2009
, “
Solid State Preparation of TiO2 Nanoparticles in Optimal NaCl: TiOSO4 Weight Ratio and Milling Time
,”
J. Nano Res.
,
6
, pp.
15
21
.
21.
Kim
,
S. B.
,
Kim
,
S. J.
,
Kim
,
C. H.
,
Kim
,
W. S.
, and
Park
,
K. W.
,
2011
, “
Nanostructure Cathode Materials Prepared by High-Energy Ball Milling Method
,”
Mater. Lett.
,
65
(
21–22
), pp.
3313
3316
.
22.
Ni
,
J. F.
,
Kawabe
,
Y.
,
Morishita
,
M.
,
Watada
,
M.
, and
Sakai
,
T.
,
2011
, “
Improved Electrochemical Activity of LiMnPO4 by High-Energy Ball-Milling
,”
J. Power Sources
,
196
(
19
), pp.
8104
8109
.
23.
Zhang
,
H.
,
Xu
,
Y. L.
, and
Liu
,
D.
,
2015
, “
Novel Nanostructured LiMn2O4 Microspheres for High Power Li-Ion Batteries
,”
RSC Adv.
,
5
(
15
), pp.
11091
11095
.
24.
Liu
,
Z. L.
,
Yu
,
A. S.
, and
Lee
,
J. Y.
,
1998
, “
Cycle Life Improvement of LiMn2O4 Cathode in Rechargeable Lithium Batteries
,”
J. Power Sources
,
74
(
2
), pp.
228
233
.
25.
Kang
,
S. H.
,
Goodenough
,
J. B.
, and
Rabenberg
,
L. K.
,
2001
, “
Effect of Ball-Milling on 3-V Capacity of Lithium-Manganese Oxospinel Cathodes
,”
Chem. Mater.
,
13
(
5
), pp.
1758
1764
.
26.
Crain
,
D.
,
Zheng
,
J. P.
,
Sulyma
,
C.
,
Goia
,
C.
,
Goia
,
D.
, and
Roy
,
D.
,
2012
, “
Electrochemical Features of Ball-Milled Lithium Manganate Spinel for Rapid-Charge Cathodes of Lithium Ion Batteries
,”
J. Solid State Electrochem.
,
16
(
8
), pp.
2605
2615
.
27.
Zhang
,
D.
,
Cai
,
R.
,
Zhou
,
Y. K.
,
Shao
,
Z. P.
,
Liao
,
X. Z.
, and
Ma
,
Z. F.
,
2010
, “
Effect of Milling Method and Time on the Properties and Electrochemical Performance of LiFePO4/C Composites Prepared by Ball Milling and Thermal Treatment
,”
Electrochim. Acta
,
55
(
8
), pp.
2653
2661
.
28.
Jiang
,
X. Y.
,
Sha
,
Y. J.
,
Cai
,
R.
, and
Shao
,
Z. P.
,
2015
, “
The Solid-State Chelation Synthesis of LiNi1/3Mn1/3Co1/3O2 as a Cathode Material for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
3
(
19
), pp.
10536
10544
.
29.
Sun
,
Y. K.
,
Kang
,
S. H.
, and
Amine
,
K.
,
2004
, “
Synthesis and Electrochemical Behavior of Layered Li(Ni0.5-xCo2xMn0.5-x)O2 (x = 0 and 0.025) Materials Prepared by Solid-State Reaction Method
,”
Mater. Res. Bull.
,
39
(
6
), pp.
819
825
.
30.
Stein
,
M.
,
Chen
,
C.-F.
,
Robles
,
D. J.
,
Rhodes
,
C.
, and
Mukherjee
,
P. P.
,
2016
, “
Non-Aqueous Electrode Processing and Construction of Lithium-Ion Coin Cells
,”
J. Visualized Exp.
,
108
, p.
e53490
.
31.
Gu
,
W. B.
, and
Wang
,
C. Y.
,
2000
, “
Thermal-Electrochemical Modeling of Battery Systems
,”
J. Electrochem. Soc.
,
147
(
8
), pp.
2910
2922
.
32.
Fujii
,
Y.
,
Miura
,
H.
,
Suzuki
,
N.
,
Shoji
,
T.
, and
Nakayama
,
N.
,
2007
, “
Structural and Electrochemical Properties of LiNi1/3Mn1/3Co1/3O2: Calcination Temperature Dependence
,”
J. Power Sources
,
171
(
2
), pp.
894
903
.
33.
Mohanty
,
D.
, and
Gabrisch
,
H.
,
2012
, “
Microstructural Investigation of LixNi1/3Mn1/3Co1/3O2 (x <= 1) and Its Aged Products Via Magnetic and Diffraction Study
,”
J. Power Sources
,
220
, pp.
405
412
.
34.
Lee
,
E. J.
,
Noh
,
H. J.
,
Yoon
,
C. S.
, and
Sun
,
Y. K.
,
2015
, “
Effect of Outer Layer Thickness on Full Concentration Gradient Layered Cathode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
273
, pp.
663
669
.
35.
Xu
,
H.
,
Zong
,
J.
,
Ding
,
F.
,
Lu
,
Z. W.
,
Li
,
W.
, and
Liu
,
X. J.
,
2016
, “
Effects of Fe2+ Ion Doping on LiMnPO4 Nanomaterial for Lithium Ion Batteries
,”
RSC Adv.
,
6
(
32
), pp.
27164
27169
.
36.
Xu
,
K.
,
2014
, “
Electrolytes and Interphases in Li-Ion Batteries and Beyond
,”
Chem. Rev.
,
114
(
23
), pp.
11503
11618
.
37.
Jow
,
T. R.
,
Marx
,
M. B.
, and
Allen
,
J. L.
,
2012
, “
Distinguishing Li+ Charge Transfer Kinetics at NCA/Electrolyte and Graphite/Electrolyte Interfaces, and NCA/Electrolyte and LFP/Electrolyte Interfaces in Li-Ion Cells
,”
J. Electrochem. Soc.
,
159
(
5
), pp.
A604
A612
.
38.
Kumar
,
P. S.
,
Sakunthala
,
A.
,
Prabu
,
M.
,
Reddy
,
M. V.
, and
Joshi
,
R.
,
2014
, “
Structure and Electrical Properties of Lithium Nickel Manganese Oxide (LiNi0.5Mn0.5O2) Prepared by P123 Assisted Hydrothermal Route
,”
Solid State Ionics
,
267
, pp.
1
8
.
39.
Doescher
,
M. S.
,
Pietron
,
J. J.
,
Dening
,
B. M.
,
Long
,
J. W.
,
Rhodes
,
C. P.
,
Edmondson
,
C. A.
, and
Rolison
,
D. R.
,
2005
, “
Using an Oxide Nanoarchitecture to Make or Break a Proton Wire
,”
Anal. Chem.
,
77
(
24
), pp.
7924
7932
.
40.
Martin
,
M. A.
,
Chen
,
C.-F.
,
Mukherjee
,
P. P.
,
Pannalab
,
S.
,
Dietiker
,
J.-F.
,
Turner
,
J. A.
, and
Ranjana
,
D.
,
2015
, “
Morphological Influence in Lithium-Ion Battery 3-D Electrode Architectures
,”
J. Electrochem. Soc
,
162
(
6
), pp.
A991
A1002
.
41.
Hasan
,
M. F. H.
,
Chen
,
C.-F.
,
Shaffer
,
C. E.
, and
Mukherjee
,
P. P.
,
2015
, “
Analysis of the Implications of Rapid Charging on Lithium-Ion Battery Performance
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
A1382
A1395
.
42.
Smith
,
K. C.
,
Mukherjee
,
P. P.
, and
Fisher
,
T. S.
,
2012
, “
Columnar Order in Jammed LiFePO4 Cathodes: Ion Transport Catastrophe and Its Mitigation
,”
Phys. Chem. Chem. Phys.
,
14
(
19
), pp.
7040
7050
.
43.
Liu
,
F.
,
Siddique
,
N. A.
, and
Mukherjee
,
P. P.
,
2011
, “
Non-Equilibrium Phase Transformation and Particle Shape Effect in LiFePO4 Materials for Li-Ion Batteries
,”
Electrochem. Solid State Lett.
,
14
(
10
), pp.
A143
A147
.
44.
Teixidor
,
G. T.
,
Park
,
B. Y.
,
Mukherjee
,
P. P.
,
Kang
,
Q.
, and
Madou
,
M. J.
,
2009
, “
Modeling of Fractal Electrodes in Li-Ion Batteries
,”
Electrochim. Acta
,
54
(
24
), pp.
5928
5936
.
45.
Shui
,
M.
,
Gao
,
S.
,
Shu
,
J.
,
Zheng
,
W. D.
,
Xu
,
D.
,
Chen
,
L. L.
,
Feng
,
L.
, and
Ren
,
Y. L.
,
2013
, “
LiNi1/3Co1/3Mn1/3O2 Cathode Materials for LIB Prepared by Spray Pyrolysis—Part II: Li+ Diffusion Kinetics
,”
Ionics
,
19
(
1
), pp.
47
52
.
46.
Guo
,
M.
,
Kim
,
G. H.
, and
White
,
R. E.
,
2013
, “
A Three-Dimensional Multi-Physics Model for a Li-ion Battery
,”
J. Power Sources
,
240
, pp.
80
94
.
47.
Gu
,
W. B.
, and
Wang
,
C. Y.
, “
Thermal-Electrochemical Coupled Modeling of a Lithium-Ion Cell
,”
The Electrochemical Society Proceedings Series
, Vol.
99
,
Electrochemical, Society
,
Pennington, NJ
, pp.
748
762
.
You do not currently have access to this content.