A Li-ion battery is a system that dynamically couples electrochemistry and mechanics. The electrochemical processes of Li insertion and extraction in the electrodes lead to a wealth of phenomena of mechanics, such as large deformation, plasticity, cavitation, fracture, and fatigue. Likewise, mechanics influences the thermodynamics and kinetics of interfacial reactions, ionic transport, and phase transformation of the electrodes. The emergence of high-capacity batteries particularly enriches the field of electrochemomechanics. This paper reviews recent observations on the intimate coupling between stresses and electrochemical processes, including diffusion-induced stresses, stress-regulated surface charge transfer, interfacial reactions, inhomogeneous growth of lithiated phases, instability of solid-state reaction front (SSRF), as well as lithiation-modulated plasticity and fracture in the electrodes. Most of the coupling effects are at the early stage of study and are to be better understood. We focus on the elaboration of these phenomena using schematic illustration. A deep understanding of the interactions between mechanics and electrochemistry and bridging these interdisciplinary fields can be truly rewarding in the development of resilient high-capacity batteries.

Reference

1.
Armand
,
M.
, and
Tarascon
,
J. M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
2.
Whittingham
,
M. S.
,
2008
, “
Materials Challenges Facing Electrical Energy Storage
,”
MRS Bull.
,
33
(
4
), pp.
411
419
.
3.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
.
4.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
5.
Kasavajjula
,
U.
,
Wang
,
C.
, and
Appleby
,
A. J.
,
2007
, “
Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells
,”
J. Power Sources
,
163
(
2
), pp.
1003
1039
.
6.
Zhang
,
W. J.
,
2011
, “
A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries
,”
J. Power Sources
,
196
(
1
), pp.
13
24
.
7.
McDowell
,
M. T.
,
Xia
,
S.
, and
Zhu
,
T.
,
2016
, “
The Mechanics of Large-Volume-Change Transformations in High-Capacity Battery Materials
,”
Extreme Mech. Lett.
,
9
(Pt. 3), pp.
480
494
.
8.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2014
, “
Stress Evolution and Capacity Fade in Constrained Lithium-Ion Pouch Cells
,”
J. Power Sources
,
245
, pp.
745
751
.
9.
Sun
,
H.
,
Xin
,
G.
,
Hu
,
T.
,
Yu
,
M.
,
Shao
,
D.
,
Sun
,
X.
, and
Lian
,
J.
,
2014
, “
High-Rate Lithiation-Induced Reactivation of Mesoporous Hollow Spheres for Long-Lived Lithium-Ion Batteries
,”
Nat. Commun.
,
5
, p.
4526
.
10.
Baggetto
,
L.
,
Danilov
,
D.
, and
Notten
,
P. H. L.
,
2011
, “
Honeycomb-Structured Silicon: Remarkable Morphological Changes Induced by Electrochemical (De)Lithiation
,”
Adv. Mater.
,
23
(
13
), pp.
1563
1566
.
11.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
12.
Kim
,
H.
,
Han
,
B.
,
Choo
,
J.
, and
Cho
,
J.
,
2008
, “
Three-Dimensional Porous Silicon Particles for Use in High-Performance Li Secondary Batteries
,”
Angew. Chem.
,
120
(
52
), pp.
10305
10308
.
13.
Liu
,
N.
,
Wu
,
H.
,
McDowell
,
M. T.
,
Yao
,
Y.
,
Wang
,
C. M.
, and
Cui
,
Y.
,
2012
, “
A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
,”
Nano Lett.
,
12
(
6
), pp.
3315
3321
.
14.
Wu
,
H.
,
Zheng
,
G. Y.
,
Liu
,
N. A.
,
Carney
,
T. J.
,
Yang
,
Y.
, and
Cui
,
Y.
,
2012
, “
Engineering Empty Space Between Si Nanoparticles for Li-Ion Battery Anodes
,”
Nano Lett.
,
12
(
2
), pp.
904
909
.
15.
Yao
,
Y.
,
McDowell
,
M. T.
,
Ryu
,
I.
,
Wu
,
H.
,
Liu
,
N.
,
Hu
,
L.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2011
, “
Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes With Long Cycle Life
,”
Nano Lett.
,
11
(
7
), pp.
2949
2954
.
16.
Cui
,
L. F.
,
Hu
,
L. B.
,
Choi
,
J. W.
, and
Cui
,
Y.
,
2010
, “
Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Li-Ion Batteries
,”
ACS Nano
,
4
(
7
), pp.
3671
3678
.
17.
Wang
,
C. M.
,
Li
,
X. L.
,
Wang
,
Z. G.
,
Xu
,
W.
,
Liu
,
J.
,
Gao
,
F.
,
Kovarik
,
L.
,
Zhang
,
J. G.
,
Howe
,
J.
,
Burton
,
D. J.
,
Liu
,
Z. Y.
,
Xiao
,
X. C.
,
Thevuthasan
,
S.
, and
Baer
,
D. R.
,
2012
, “
In Situ TEM Investigation of Congruent Phase Transition and Structural Evolution of Nanostructured Silicon/Carbon Anode for Li Ion Batteries
,”
Nano Lett.
,
12
(
3
), pp.
1624
1632
.
18.
Yamada
,
M.
,
Ueda
,
A.
,
Matsumoto
,
K.
, and
Ohzuku
,
T.
,
2011
, “
Silicon-Based Negative Electrode for High-Capacity Li-Ion Batteries: “SiO”-Carbon Composite
,”
J. Electrochem. Soc.
,
158
(
4
), pp.
A417
A421
.
19.
Sandu
,
G.
,
Brassart
,
L.
,
Gohy
,
J. F.
,
Pardoen
,
T.
,
Melinte
,
S.
, and
Vlad
,
A.
,
2014
, “
Surface Coating Mediated Swelling and Fracture of Silicon Nanowires During Lithiation
,”
ACS Nano
,
8
(
9
), pp.
9427
9436
.
20.
Wang
,
J. W.
,
Liu
,
X. H.
,
Zhao
,
K. J.
,
Palmer
,
A.
,
Patten
,
E.
,
Burton
,
D.
,
Mao
,
S. X.
,
Suo
,
Z. G.
, and
Huang
,
J. Y.
,
2012
, “
Sandwich-Lithiation and Longitudinal Crack in Amorphous Silicon Coated on Carbon Nanofibers
,”
ACS Nano
,
6
(
10
), pp.
9158
9167
.
21.
Nowack
,
L. V.
,
Bunjaku
,
T.
,
Wegner
,
K.
,
Pratsinis
,
S. E.
,
Luisier
,
M.
, and
Wood
,
V.
,
2015
, “
Design and Fabrication of Microspheres With Hierarchical Internal Structure for Tuning Battery Performance
,”
Adv. Sci.
,
2
(
6
), p. 1500078.
22.
Magasinski
,
A.
,
Dixon
,
P.
,
Hertzberg
,
B.
,
Kvit
,
A.
,
Ayala
,
J.
, and
Yushin
,
G.
,
2010
, “
High-Performance Li-Ion Nodes Using a Hierarchical Bottom-Up Approach
,”
Nat. Mater.
,
9
(
4
), pp.
353
358
.
23.
Chen
,
X. L.
,
Gerasopoulos
,
K.
,
Guo
,
J. C.
,
Brown
,
A.
,
Wang
,
C. S.
,
Ghodssi
,
R.
, and
Culver
,
J. N.
,
2011
, “
A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structured Current Collector
,”
Adv. Funct. Mater.
,
21
(
2
), pp.
380
387
.
24.
Haftbaradaran
,
H.
,
Xiao
,
X. C.
,
Verbrugge
,
M. W.
, and
Gao
,
H. J.
,
2012
, “
Method to Deduce the Critical Size for Interfacial Delamination of Patterned Electrode Structures and Application to Lithiation of Thin-Film Silicon Islands
,”
J. Power Sources
,
206
, pp.
357
366
.
25.
Soni
,
S. K.
,
Sheldon
,
B. W.
,
Xiao
,
X. C.
,
Verbrugge
,
M. W.
,
Ahn
,
D.
,
Haftbaradaran
,
H.
, and
Gao
,
H. J.
,
2012
, “
Stress Mitigation During the Lithiation of Patterned Amorphous Si Islands
,”
J. Electrochem. Soc.
,
159
(
1
), pp.
A38
A43
.
26.
Beaulieu
,
L. Y.
,
Eberman
,
K. W.
,
Turner
,
R. L.
,
Krause
,
L. J.
, and
Dahn
,
J. R.
,
2001
, “
Colossal Reversible Volume Changes in Lithium Alloys
,”
Solid State Lett.
,
4
(
9
), pp.
A137
A140
.
27.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
(
7
), p.
073517
.
28.
Mukhopadhyay
,
A.
, and
Sheldon
,
B. W.
,
2014
, “
Deformation and Stress in Electrode Materials for Li-Ion Batteries
,”
Prog. Mater. Sci.
,
63
, pp.
58
116
.
29.
Zhao
,
K.
,
Pharr
,
M.
,
Wan
,
Q.
,
Wang
,
W. L.
,
Kaxiras
,
E.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Concurrent Reaction and Plasticity During Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
A238
A243
.
30.
Choi
,
J. W.
,
McDonough
,
J.
,
Jeong
,
S.
,
Yoo
,
J. S.
,
Chan
,
C. K.
, and
Cui
,
Y.
,
2010
, “
Stepwise Nanopore Evolution in One-Dimensional Nanostructures
,”
Nano Lett.
,
10
(
4
), pp.
1409
1413
.
31.
Liu
,
X. H.
,
Huang
,
S.
,
Picraux
,
S. T.
,
Li
,
J.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2011
, “
Reversible Nanopore Formation in Ge Nanowires During Lithiation–Delithiation Cycling: An In Situ Transmission Electron Microscopy Study
,”
Nano Lett.
,
11
(
9
), pp.
3991
3997
.
32.
Zhao
,
K.
,
Wang
,
W. L.
,
Gregoire
,
J.
,
Pharr
,
M.
,
Suo
,
Z.
,
Vlassak
,
J. J.
, and
Kaxiras
,
E.
,
2011
, “
Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study
,”
Nano Lett.
,
11
(
7
), pp.
2962
2967
.
33.
Zhao
,
K.
,
Tritsaris
,
G. A.
,
Pharr
,
M.
,
Wang
,
W. L.
,
Okeke
,
O.
,
Suo
,
Z.
,
Vlassak
,
J. J.
, and
Kaxiras
,
E.
,
2012
, “
Reactive Flow in Silicon Electrodes Assisted by the Insertion of Lithium
,”
Nano Lett.
,
12
(
8
), pp.
4397
4403
.
34.
Brassart
,
L.
, and
Suo
,
Z.
,
2013
, “
Reactive Flow in Solids
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
61
77
.
35.
Huang
,
X.
,
Yang
,
H.
,
Liang
,
W.
,
Raju
,
M.
,
Terrones
,
M.
,
Crespi
, V
. H.
,
van Duin
,
A. C.
, and
Zhang
,
S.
,
2013
, “
Lithiation Induced Corrosive Fracture in Defective Carbon Nanotubes
,”
Appl. Phys. Lett.
,
103
(
15
), p.
153901
.
36.
Xu
,
R.
,
Vasconcelos
,
L. S.
, and
Zhao
,
K.
,
2016
, “
Computational Analysis of Chemomechanical Behaviors of Composite Electrodes in Li-Ion Batteries
,”
J. Mater. Res.
,
31
(
18
), pp.
2715
2727
.
37.
Yang
,
H.
,
Liang
,
W.
,
Guo
,
X.
,
Wang
,
C. M.
, and
Zhang
,
S.
,
2015
, “
Strong Kinetics-Stress Coupling in Lithiation of Si and Ge Anodes
,”
Extreme Mech. Lett.
,
2
, pp.
1
6
.
38.
Sheldon
,
B. W.
,
Soni
,
S. K.
,
Xiao
,
X.
, and
Qi
,
Y.
,
2011
, “
Stress Contributions to Solution Thermodynamics in Li-Si Alloys
,”
Electrochem. Solid-State Lett.
,
15
(
1
), pp.
A9
A11
.
39.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
195
(
15
), pp.
5062
5066
.
40.
Pharr
,
M.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2014
, “
Variation of Stress With Charging Rate Due to Strain-Rate Sensitivity of Silicon Electrodes of Li-Ion Batteries
,”
J. Power Sources
,
270
, pp.
569
575
.
41.
Spaepen
,
F.
,
2005
, “
A Survey of Energies in Materials Science
,”
Philos. Mag.
,
85
(
26
), pp.
2979
2987
.
42.
Zhao
,
K.
,
Pharr
,
M.
,
Cai
,
S.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge
,”
J. Am. Ceram. Soc.
,
94
(
s1
), pp.
s226
s235
.
43.
Soni
,
S. K.
,
Sheldon
,
B. W.
,
Xiao
,
X.
,
Bower
,
A. F.
, and
Verbrugge
,
M. W.
,
2012
, “
Diffusion Mediated Lithiation Stresses in Si Thin Film Electrodes
,”
J. Electrochem. Soc.
,
159
(
9
), pp.
A1520
A1527
.
44.
Gao
,
Y. F.
, and
Zhou
,
M.
,
2011
, “
Strong Stress-Enhanced Diffusion in Amorphous Lithium Alloy Nanowire Electrodes
,”
J. Appl. Phys.
,
109
(
1
), p.
014310
.
45.
Gao
,
Y. F.
, and
Zhou
,
M.
,
2013
, “
Coupled Mechano-Diffusional Driving Forces for Fracture in Electrode Materials
,”
J. Power Sources
,
230
, pp.
176
193
.
46.
Pan
,
J.
,
Zhang
,
Q.
,
Li
,
J.
,
Beck
,
M. J.
,
Xiao
,
X.
, and
Cheng
,
Y. T.
,
2015
, “
Effects of Stress on Lithium Transport in Amorphous Silicon Electrodes for Lithium-Ion Batteries
,”
Nano Energy
,
13
, pp.
192
199
.
47.
Choi
,
Y. M.
, and
Pyun
,
S. I.
,
1997
, “
Effects of Intercalation-Induced Stress on Li Transport Through Porous LiCoO2 Electrode
,”
Solid State Ionics
,
99
(
3
), pp.
173
183
.
48.
Prussin
,
S.
,
1961
, “
The Generation and Distribution of Dislocations by Solute Diffusion
,”
J. Appl. Phys.
,
32
(
10
), p.
1876
.
49.
Larche
,
F.
, and
Cahn
,
J. W.
,
1973
, “
Linear Theory of Thermochemical Equilibrium of Solids Under Stress
,”
Acta Metall.
,
21
(
8
), pp.
1051
1063
.
50.
Larche
,
F.
, and
Cahn
,
J. W.
,
1978
, “
Non-Linear Theory of Thermochemical Equilibrium of Solids Under Stress
,”
Acta Metall.
,
26
(
1
), pp.
53
60
.
51.
Li
,
J. C. M.
,
1978
, “
Physical-Chemistry of Some Microstructural Phenomena
,”
Metall. Mater. Trans. A
,
9
(
10
), pp.
1353
1380
.
52.
Stephenson
,
G. B.
,
1988
, “
Deformation During Interdiffusion
,”
Acta Metall.
,
36
(
10
), pp.
2663
2683
.
53.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
Stress Generation and Fracture in Li Insertion Materials
,”
J. Solid State Electrochem.
,
10
(
5
), pp.
293
319
.
54.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
A Mathematical Model of Stress Generation and Fracture in Li Manganese Oxide
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1019
A1030
.
55.
Zhang
,
X. C.
,
Shyy
,
W.
, and
Sastry
,
A. M.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A910
A916
.
56.
Zhang
,
X. C.
,
Sastry
,
A. M.
, and
Shyy
,
W.
,
2008
, “
Intercalation-Induced Stress and Heat Generation Within Single Li-Ion Battery Cathode Particles
,”
J. Electrochem. Soc.
,
155
(
7
), pp.
A542
A552
.
57.
Golmon
,
S.
,
Maute
,
K.
,
Lee
,
S. H.
, and
Dunn
,
M. L.
,
2010
, “
Stress Generation in Silicon Particles During Li Insertion
,”
Appl. Phys. Lett.
,
97
(
3
), p.
033111
.
58.
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2009
, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
(
2
), pp.
453
460
.
59.
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2010
, “
Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles
,”
J. Electrochem. Soc.
,
157
(
4
), pp.
A508
A516
.
60.
Haftbaradaran
,
H.
,
Gao
,
H. J.
, and
Curtin
,
W. A.
,
2010
, “
A Surface Locking Instability for Atomic Intercalation Into a Solid Electrode
,”
Appl. Phys. Lett.
,
96
(
9
), p.
091909
.
61.
Haftbaradaran
,
H.
,
Song
,
J.
,
Curtin
,
W. A.
, and
Gao
,
H. J.
,
2011
, “
Continuum and Atomistic Models of Strongly Coupled Diffusion, Stress, and Solute Concentration
,”
J. Power Sources
,
196
(
1
), pp.
361
370
.
62.
Gao
,
Y. F.
, and
Zhou
,
M.
,
2012
, “
Strong Dependency of Li Diffusion on Mechanical Constraints in High-Capacity Li-Ion Battery Electrodes
,”
Acta Mech. Sin.
,
28
(
4
), pp.
1068
1077
.
63.
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2008
, “
The Influence of Surface Mechanics on Diffusion Induced Stresses Within Spherical Nanoparticles
,”
J. Appl. Phys.
,
104
(
8
), p.
083521
.
64.
DeLuca
,
C. M.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2011
, “
Effects of Electrode Particle Morphology on Stress Generation in Silicon During Li Insertion
,”
J. Power Sources
,
196
(
22
), pp.
9672
9681
.
65.
Deshpande
,
R.
,
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2010
, “
Modeling Diffusion-Induced Stress in Nanowire Electrode Structures
,”
J. Power Sources
,
195
(
15
), pp.
5081
5088
.
66.
Garcia
,
R. E.
,
Chiang
,
Y. M.
,
Carter
,
W. C.
,
Limthongkul
,
P.
, and
Bishop
,
C. M.
,
2005
, “
Microstructural Modeling and Design of Rechargeable Li-Ion Batteries
,”
J. Electrochem. Soc.
,
152
(
1
), pp.
A255
A263
.
67.
Purkayastha
,
R. T.
, and
McMeeking
,
R. M.
,
2012
, “
An Integrated 2-D Model of a Li Ion Battery: The Effect of Material Parameters and Morphology on Storage Particle Stress
,”
Comput. Mech.
,
50
(
2
), pp.
209
227
.
68.
Zhang
,
J. Q.
,
Lu
,
B.
,
Song
,
Y. C.
, and
Ji
,
X.
,
2012
, “
Diffusion Induced Stress in Layered Li-Ion Battery Electrode Plates
,”
J. Power Sources
,
209
, pp.
220
227
.
69.
Yang
,
B.
,
He
,
Y. P.
,
Irsa
,
J.
,
Lundgren
,
C. A.
,
Ratchford
,
J. B.
, and
Zhao
,
Y. P.
,
2012
, “
Effects of Composition-Dependent Modulus, Finite Concentration and Boundary Constraint on Li-Ion Diffusion and Stresses in a Bilayer Cu-Coated Si Nano-Anode
,”
J. Power Sources
,
204
, pp.
168
176
.
70.
Lim
,
C.
,
Yan
,
B.
,
Yin
,
L. L.
, and
Zhu
,
L. K.
,
2012
, “
Simulation of Diffusion-Induced Stress Using Reconstructed Electrodes Particle Structures Generated by Micro/Nano-CT
,”
Electrochim. Acta
,
75
, pp.
279
287
.
71.
Huang
,
H. Y. S.
, and
Wang
,
Y. X.
,
2012
, “
Dislocation Based Stress Developments in Li-Ion Batteries
,”
J. Electrochem. Soc.
,
159
(
6
), pp.
A815
A821
.
72.
Bhandakkar
,
T. K.
, and
Johnson
,
H. T.
,
2012
, “
Diffusion Induced Stresses in Buckling Battery Electrodes
,”
J. Mech. Phys. Solids
,
60
(
6
), pp.
1103
1121
.
73.
Barai
,
P.
, and
Mukherjee
,
P. P.
,
2013
, “
Stochastic Analysis of Diffusion Induced Damage in Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
160
(
6
), pp.
A955
A967
.
74.
Chen
,
C. F.
,
Barai
,
P.
, and
Mukherjee
,
P. P.
,
2014
, “
Diffusion Induced Damage and Impedance Response in Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
161
(
14
), pp.
A2138
A2152
.
75.
Barai
,
P.
, and
Mukherjee
,
P. P.
,
2016
, “
Mechano-Electrochemical Stochastics in High-Capacity Electrodes for Energy Storage
,”
J. Electrochem. Soc.
,
163
(
6
), pp.
A1120
A1137
.
76.
Bower
,
A. F.
,
Guduru
,
P. R.
, and
Sethuraman
, V
. A.
,
2011
, “
A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half-Cell
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
804
828
.
77.
Di Leo
,
C. V.
,
Rejovitzky
,
E.
, and
Anand
,
L.
,
2015
, “
Diffusion–Deformation Theory for Amorphous Silicon Anodes: The Role of Plastic Deformation on Electrochemical Performance
,”
Int. J. Solids Struct.
,
67–68
, pp.
283
296
.
78.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Inelastic Hosts as Electrodes for High-Capacity Lithium-Ion Batteries
,”
J. Appl. Phys.
,
109
(
1
), p.
016110
.
79.
Brassart
,
L.
,
Zhao
,
K.
, and
Suo
,
Z.
,
2013
, “
Cyclic Plasticity and Shakedown in High-Capacity Electrodes of Lithium-Ion Batteries
,”
Int. J. Solids Struct.
,
50
(
7
), pp.
1120
1129
.
80.
Cui
,
Z.
,
Gao
,
F.
, and
Qu
,
J.
,
2012
, “
A Finite Deformation Stress-Dependent Chemical Potential and Its Applications to Lithium Ion Batteries
,”
J. Mech. Phys. Solids
,
60
(
7
), pp.
1280
1295
.
81.
Xu
,
R.
, and
Zhao
,
K.
,
2015
, “
Mechanical Interactions Regulated Kinetics and Morphology of Composite Electrodes in Li-Ion Batteries
,”
Extreme Mech. Lett.
,
8
, pp.
13
21
.
82.
Verbrugge
,
M. W.
, and
Koch
,
B. J.
,
1996
, “
Modeling Li Intercalation of Single-Fiber Carbon Microelectrodes
,”
J. Electrochem. Soc.
,
143
(
2
), pp.
600
608
.
83.
Karthikeyan
,
D. K.
,
Sikha
,
G.
, and
White
,
R. E.
,
2008
, “
Thermodynamic Model Development for Li Intercalation Electrodes
,”
J. Power Sources
,
185
(
2
), pp.
1398
1407
.
84.
Sethuraman
, V
. A.
,
Srinivasan
,
V.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
A1253
A1261
.
85.
Piper
,
D. M.
,
Yersak
,
T. A.
, and
Lee
,
S. H.
,
2013
, “
Effect of Compressive Stress on Electrochemical Performance of Silicon Anodes
,”
J. Electrochem. Soc.
,
160
(
1
), pp.
A77
A81
.
86.
Lu
,
B.
,
Song
,
Y.
,
Zhang
,
Q.
,
Pan
,
J.
,
Cheng
,
Y. T.
, and
Zhang
,
J.
,
2016
, “
Voltage Hysteresis of Lithium Ion Batteries Caused by Mechanical Stress
,”
Phys. Chem. Chem. Phys.
,
18
(
6
), pp.
4721
4727
.
87.
Kim
,
S.
,
Choi
,
S. J.
,
Zhao
,
K.
,
Yang
,
H.
,
Gobbi
,
G.
,
Zhang
,
S.
, and
Li
,
J.
,
2016
, “
Electrochemically Driven Mechanical Energy Harvesting
,”
Nat. Commun.
,
7
, p.
10146
.
88.
Chon
,
M. J.
,
Sethuraman
,
V. A.
,
McCormick
,
A.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2011
, “
Real-Time Measurement of Stress and Damage Evolution During Initial Lithiation of Crystalline Silicon
,”
Phys. Rev. Lett.
,
107
(
4
), p.
045503
.
89.
Liu
,
X. H.
,
Zheng
,
H.
,
Zhong
,
L.
,
Huang
,
S.
,
Karki
,
K.
,
Zhang
,
L. Q.
,
Liu
,
Y.
,
Kushima
,
A.
,
Liang
,
W. T.
,
Wang
,
J. W.
,
Cho
,
J.-H.
,
Epstein
,
E.
,
Dayeh
,
S. A.
,
Picraux
,
S. T.
,
Zhu
,
T.
,
Li
,
J.
,
Sullivan
,
J. P.
,
Cumings
,
J.
,
Wang
,
C.
,
Mao
,
S. X.
,
Ye
,
Z. Z.
,
Zhang
,
S.
, and
Huang
,
J. Y.
,
2011
, “
Anisotropic Swelling and Fracture of Silicon Nanowires During Lithiation
,”
Nano Lett.
,
11
(
8
), pp.
3312
3318
.
90.
Yang
,
H.
,
Fan
,
F.
,
Liang
,
W.
,
Guo
,
X.
,
Zhu
,
T.
, and
Zhang
,
S.
,
2014
, “
A Chemo-Mechanical Model of Lithiation in Silicon
,”
J. Mech. Phys. Solids
,
70
, pp.
349
361
.
91.
Limthongkul
,
P.
,
Jang
,
Y. I.
,
Dudney
,
N. J.
, and
Chiang
,
Y. M.
,
2003
, “
Electrochemically-Driven Solid-State Amorphization in Lithium–Silicon Alloys and Implications for Lithium Storage
,”
Acta Mater.
,
51
(
4
), pp.
1103
1113
.
92.
McDowell
,
M. T.
,
Lee
,
S. W.
,
Wang
,
C.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2012
, “
Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation With In Situ Transmission Electron Microscopy
,”
Adv. Mater.
,
24
(
45
), pp.
6034
6041
.
93.
Zhang
,
Y.
,
Li
,
Y.
,
Wang
,
Z.
, and
Zhao
,
K.
,
2014
, “
Lithiation of SiO2 in Li-Ion Batteries: In Situ Transmission Electron Microscopy Experiments and Theoretical Studies
,”
Nano Lett.
,
14
(
12
), pp.
7161
7170
.
94.
Liu
,
D. J.
,
Weeks
,
J. D.
, and
Kandel
,
D.
,
1998
, “
Current-Induced Step Bending Instability on Vicinal Surfaces
,”
Phys. Rev. Lett.
,
81
(
13
), p.
2743
.
95.
Nielsen
,
J. F.
,
Pelz
,
J. P.
, and
Pettersen
,
M. S.
,
2000
, “
Observation of Direct-Current-Induced Step Bending Patterns on Si (001)
,”
Surf. Rev. Lett.
,
7
(5–6), pp.
577
582
.
96.
Zhang
,
Y.
,
Wang
,
Z.
,
Li
,
Y.
, and
Zhao
,
K.
,
2015
, “
Lithiation of ZnO Nanowires Studied by In Situ Transmission Electron Microscopy and Theoretical Analysis
,”
Mech. Mater.
,
91
(Pt. 2), pp.
313
322
.
97.
Jia
,
Z.
, and
Li
,
T.
,
2016
, “
Intrinsic Stress Mitigation Via Elastic Softening During Two-Step Electrochemical Lithiation of Amorphous Silicon
,”
J. Mech. Phys. Solids
,
91
, pp.
278
290
.
98.
Hertzberg
,
B.
,
Benson
,
J.
, and
Yushin
,
G.
,
2011
, “
Ex-Situ Depth-Sensing Indentation Measurements of Electrochemically Produced Si-Li Alloy Films
,”
Electrochem. Commun.
,
13
(
8
), pp.
818
821
.
99.
Ratchford
,
J. B.
,
Crawford
,
B. A.
,
Wolfenstine
,
J.
,
Allen
,
J. L.
, and
Lundgren
,
C. A.
,
2012
, “
Young's Modulus of Polycrystalline Li12Si7 Using Nanoindentation Testing
,”
J. Power Sources
,
211
, pp.
1
3
.
100.
Levitas
,
V. I.
, and
Attariani
,
H.
,
2013
, “
Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon Under Stress Tensor
,”
Sci. Rep.
,
3
, p. 1615.
101.
Levitas
,
V. I.
, and
Attariani
,
H.
,
2014
, “
Anisotropic Compositional Expansion in Elastoplastic Materials and Corresponding Chemical Potential: Large-Strain Formulation and Application to Amorphous Lithiated Silicon
,”
J. Mech. Phys. Solids
,
69
, pp.
84
111
.
102.
Hong
,
W.
,
2015
, “
A Kinetic Model for Anisotropic Reactions in Amorphous Solids
,”
Extreme Mech. Lett.
,
2
, pp.
46
51
.
103.
Khosrownejad
,
S. M.
, and
Curtin
,
W. A.
,
2016
, “
Model for Charge/Discharge-Rate-Dependent Plastic Flow in Amorphous Battery Materials
,”
J. Mech. Phys. Solids
,
94
, pp.
167
180
.
104.
Choi
,
J. W.
,
Cui
,
Y.
, and
Nix
,
W. D.
,
2011
, “
Size-Dependent Fracture of Si Nanowire Battery Anodes
,”
J. Mech. Phys. Solids
,
59
(
9
), pp.
1717
1730
.
105.
Liu
,
X. H.
,
Zhong
,
L.
,
Huang
,
S.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2012
, “
Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
,”
ACS Nano
,
6
(
2
), pp.
1522
1531
.
106.
Zhao
,
K.
,
Pharr
,
M.
,
Hartle
,
L.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Fracture and Debonding in Lithium-Ion Batteries With Electrodes of Hollow Core–Shell Nanostructures
,”
J. Power Sources
,
218
, pp.
6
14
.
107.
Lee
,
S. W.
,
Lee
,
H. W.
,
Nix
,
W. D.
,
Gao
,
H.
, and
Cui
,
Y.
,
2015
, “
Kinetics and Fracture Resistance of Lithiated Silicon Nanostructure Pairs Controlled by Their Mechanical Interaction
,”
Nat. Commun.
,
6
, p.
7533
.
108.
Deshpande
,
R.
,
Verbrugge
,
M.
,
Cheng
,
Y. T.
,
Wang
,
J.
, and
Liu
,
P.
,
2012
, “
Battery Cycle Life Prediction With Coupled Chemical Degradation and Fatigue Mechanics
,”
J. Electrochem. Soc.
,
159
(
10
), pp.
A1730
A1738
.
109.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Van Winkle
,
N.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurement of Biaxial Modulus of Si Anode for Li-Ion Batteries
,”
Electrochem. Commun.
,
12
(
11
), pp.
1614
1617
.
110.
Vasconcelos
,
L. S.
,
Xu
,
R.
,
Li
,
J.
, and
Zhao
,
K.
,
2016
, “
Grid Indentation Analysis of Mechanical Properties of Composite Electrodes in Li-Ion Batteries
,”
Extreme Mech. Lett.
,
9
(Pt. 3), pp.
495
502
.
111.
Qi
,
Y.
,
Hector
,
L. G.
,
James
,
C.
, and
Kim
,
K. J.
,
2014
, “
Lithium Concentration Dependent Elastic Properties of Battery Electrode Materials From First Principles Calculations
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
F3010
F3018
.
112.
Shenoy
,
V. B.
,
Johari
,
P.
, and
Qi
,
Y.
,
2010
, “
Elastic Softening of Amorphous and Crystalline Li-Si Phases With Increasing Li Concentration: A First-Principles Study
,”
J. Power Sources
,
195
(
19
), pp.
6825
6830
.
113.
Choi
,
Y. S.
,
Pharr
,
M.
,
Oh
,
K. H.
, and
Vlassak
,
J. J.
,
2015
, “
A Simple Technique for Measuring the Fracture Energy of Lithiated Thin-Film Silicon Electrodes at Various Lithium Concentrations
,”
J. Power Sources
,
294
, pp.
159
166
.
114.
Berla
,
L. A.
,
Lee
,
S. W.
,
Cui
,
Y.
, and
Nix
,
W. D.
,
2014
, “
Robustness of Amorphous Silicon During the Initial Lithiation/Delithiation Cycle
,”
J. Power Sources
,
258
, pp.
253
259
.
115.
Grantab
,
R.
, and
Shenoy
, V
. B.
,
2012
, “
Pressure-Gradient Dependent Diffusion and Crack Propagation in Lithiated Silicon Nanowires
,”
J. Electrochem. Soc.
,
159
(
5
), pp.
A584
A591
.
116.
Yang
,
H.
,
Huang
,
X.
,
Liang
,
W.
,
Van Duin
,
A. C.
,
Raju
,
M.
, and
Zhang
,
S.
,
2013
, “
Self-Weakening in Lithiated Graphene Electrodes
,”
Chem. Phys. Lett.
,
563
, pp.
58
62
.
117.
Yang
,
F.
,
Liu
,
B.
, and
Fang
,
D. N.
,
2011
, “
Interplay Between Fracture and Diffusion Behaviors: Modeling and Phase Field Computation
,”
Comput. Mater. Sci.
,
50
(
9
), pp.
2554
2560
.
118.
Evans
,
A. G.
,
Mumm
,
D. R.
,
Hutchinson
,
J. W.
,
Meier
,
G. H.
, and
Pettit
,
F. S.
,
2001
, “
Mechanisms Controlling the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
,
46
(
5
), pp.
505
553
.
119.
Xu
,
R.
,
Fan
,
X. L.
,
Zhang
,
W. X.
, and
Wang
,
T. J.
,
2014
, “
Interfacial Fracture Mechanism Associated With Mixed Oxides Growth in Thermal Barrier Coating System
,”
Surf. Coat. Technol.
,
253
, pp.
139
147
.
120.
Klinsmann
,
M.
,
Rosato
,
D.
,
Kamlah
,
M.
, and
McMeeking
,
R. M.
,
2016
, “
Modeling Crack Growth During Li Insertion in Storage Particles Using a Fracture Phase Field Approach
,”
J. Mech. Phys. Solids
,
92
, pp.
313
344
.
You do not currently have access to this content.