The lithium-ion battery (LIB) has emerged as a key energy storage device for a wide range of applications, from consumer electronics to transportation. While LIBs have made key advancements in these areas, limitations remain for Li-ion batteries with respect to affordability, performance, and reliability. These challenges have encouraged the exploration for more advanced materials and novel chemistries to mitigate these limitations. The continued development of Li-ion and other advanced batteries is an inherently multiscale problem that couples electrochemistry, transport phenomena, mechanics, microstructural morphology, and device architecture. Observing the internal structure of batteries, both ex situ and during operation, provides a critical capability for further advancement of energy storage technology. X-ray imaging has been implemented to provide further insight into the mechanisms governing Li-ion batteries through several 2D and 3D techniques. Ex situ imaging has yielded microstructural data from both anode and cathode materials, providing insight into mesoscale structure and composition. Furthermore, since X-ray imaging is a nondestructive process studies have been conducted in situ and in operando to observe the mechanisms of operation as they occur. Data obtained with these methods has also been integrated into multiphysics models to predict and analyze electrode behavior. The following paper provides a brief review of X-ray imaging work related to Li-ion batteries and the opportunities these methods provide for the direct observation and analysis of the multiphysics behavior of battery materials.

References

References
1.
Cocco
,
A. P.
,
Nelson
,
G. J.
,
Harris
,
W. M.
,
Nakajo
,
A.
,
Myles
,
T. D.
,
Kiss
,
A. M.
,
Lombardo
,
J. J.
, and
Chiu
,
W. K. S.
,
2013
, “
Three-Dimensional Microstructural Imaging Methods for Energy Materials
,”
Phys. Chem. Chem. Phys.
,
15
(
39
), pp.
16377
16407
.
2.
Wilson
,
J. R.
,
Cronin
,
J. S.
,
Barnett
,
S. A.
, and
Harris
,
S. J.
,
2011
, “
Measurement of Three-Dimensional Microstructure in a LiCoO2 Positive Electrode
,”
J. Power Sources
,
196
(
7
), pp.
3443
3447
.
3.
Stephenson
,
D. E.
,
Walker
,
B. C.
,
Skelton
,
C. B.
,
Gorzkowski
,
E. P.
,
Rowenhorst
,
D. J.
, and
Wheeler
,
D. R.
,
2011
, “
Modeling 3D Microstructure and Ion Transport in Porous Li-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
158
(
7
), pp.
A781
A789
.
4.
Less
,
G. B.
,
Seo
,
J. H.
,
Han
,
S.
,
Sastry
,
A. M.
,
Zausch
,
J.
,
Latz
,
A.
,
Schmidt
,
S.
,
Wieser
,
C.
,
Kehrwald
,
D.
, and
Fell
,
S.
,
2012
, “
Micro-Scale Modeling of Li-Ion Batteries: Parameterization and Validation
,”
J. Electrochem. Soc.
,
159
(
6
), pp.
A697
A704
.
5.
Ender
,
M.
,
Joos
,
J.
,
Carraro
,
T.
, and
Ivers-Tiffée
,
E.
,
2011
, “
Three-Dimensional Reconstruction of a Composite Cathode for Lithium-Ion Cells
,”
Electrochem. Commun.
,
13
(
2
), pp.
166
168
.
6.
Chen-Wiegart
,
Y. K.
,
Liu
,
Z.
,
Faber
,
K. T.
,
Barnett
,
S. A.
, and
Wang
,
J.
,
2013
, “
3D Analysis of a LiCoO2–Li(Ni1/3Mn1/3Co1/3)O2 Li-Ion Battery Positive Electrode Using X-Ray Nano-Tomography
,”
Electrochem. Commun.
,
28
, pp.
127
130
.
7.
Wang
,
J.
,
Chen-Wiegart
,
Y. K.
, and
Wang
,
J.
,
2013
, “
In Situ Chemical Mapping of a Lithium-Ion Battery Using Full-Field Hard X-Ray Spectroscopic Imaging
,”
Chem. Commun.
,
49
(
58
), pp.
6480
6482
.
8.
Yan
,
B.
,
Lim
,
C.
,
Yin
,
L.
, and
Zhu
,
L.
,
2012
, “
Three Dimensional Simulation of Galvanostatic Discharge of LiCoO2 Cathode Based on X-Ray Nano-CT Images
,”
J. Electrochem. Soc.
,
159
(
10
), pp.
A1604
A1614
.
9.
Yan
,
B.
,
Lim
,
C.
,
Yin
,
L.
, and
Zhu
,
L.
,
2013
, “
Simulation of Heat Generation in a Reconstructed LiCoO2 Cathode During Galvanostatic Discharge
,”
Electrochim. Acta
,
100
, pp.
171
179
.
10.
Lim
,
C.
,
Yan
,
B.
,
Yin
,
L.
, and
Zhu
,
L.
,
2012
, “
Simulation of Diffusion-Induced Stress Using Reconstructed Electrodes Particle Structures Generated by Micro/Nano-CT
,”
Electrochim. Acta
,
75
, pp.
279
287
.
11.
Liu
,
Z.
,
Cronin
,
J. S.
,
Chen-Wiegart
,
Y. K.
,
Wilson
,
J. R.
,
Yakal-Kremski
,
K. J.
,
Wang
,
J.
,
Faber
,
K. T.
, and
Barnett
,
S. A.
,
2013
, “
Three-Dimensional Morphological Measurements of LiCoO2 and LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 Lithium-Ion Battery Cathodes
,”
J. Power Sources
,
227
, pp.
267
274
.
12.
Sun
,
Y.-K.
,
Chen
,
Z.
,
Noh
,
H.-J.
,
Lee
,
D.-J.
,
Jung
,
H.-G.
,
Ren
,
Y.
,
Wang
,
S.
,
Yoon
,
C. S.
,
Myung
,
S.-T.
, and
Amine
,
K.
,
2012
, “
Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries
,”
Nat. Mater.
,
11
(
11
), pp.
942
947
.
13.
Shearing
,
P. R.
,
Howard
,
L. E.
,
Jørgensen
,
P. S.
,
Brandon
,
N. P.
, and
Harris
,
S. J.
,
2010
, “
Characterization of the 3-Dimensional Microstructure of a Graphite Negative Electrode From a Li-Ion Battery
,”
Electrochem. Commun.
,
12
(
3
), pp.
374
377
.
14.
Chen-Wiegart
,
Y. K.
,
Shearing
,
P.
,
Yuan
,
Q.
,
Tkachuk
,
A.
, and
Wang
,
J.
,
2012
, “
3D Morphological Evolution of Li-Ion Battery Negative Electrode LiVO2 During Oxidation Using X-Ray Nano-Tomography
,”
Electrochem. Commun.
,
21
, pp.
58
61
.
15.
Vila-Comamala
,
J.
,
Pan
,
Y.
,
Lombardo
,
J. J.
,
Harris
,
W. M.
,
Chiu
,
W. K. S.
,
David
,
C.
, and
Wang
,
Y.
,
2012
, “
Zone-Doubled Fresnel Zone Plates for High-Resolution Hard X-Ray Full-Field Transmission Microscopy
,”
J. Synchrotron Radiat.
,
19
(
5
), pp.
705
709
.
16.
Grew
,
K. N.
,
Chu
,
Y. S.
,
Yi
,
J.
,
Peracchio
,
A. A.
,
Izzo
,
J. R.
,
Hwu
,
Y.
,
Carlo
,
F. D.
, and
Chiu
,
W. K. S.
,
2010
, “
Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode
,”
J. Electrochem. Soc.
,
157
(
6
), pp.
B783
B792
.
17.
Nelson
,
G. J.
,
Grew
,
K. N.
,
Izzo
,
J. R.
,
Lombardo
,
J. J.
,
Harris
,
W. M.
,
Faes
,
A.
,
Hessler-Wyser
,
A.
,
Herle
,
J. V.
,
Wang
,
S.
,
Chu
,
Y. S.
,
Virkar
,
A. V.
, and
Chiu
,
W. K. S.
,
2012
, “
Three-Dimensional Microstructural Changes in the Ni-YSZ Solid Oxide Fuel Cell Anode During Operation
,”
Acta Mater.
,
60
(
8
), pp.
3491
3500
.
18.
Nelson
,
G. J.
,
Harris
,
W. M.
,
Izzo
,
J. R.
,
Grew
,
K. N.
,
Chiu
,
W. K. S.
,
Chu
,
Y. S.
,
Yi
,
J.
,
Andrews
,
J. C.
,
Liu
,
Y.
, and
Pianetta
,
P.
,
2011
, “
Three-Dimensional Mapping of Nickel Oxidation States Using Full Field X-Ray Absorption Near Edge Structure Nanotomography
,”
Appl. Phys. Lett.
,
98
(
17
), p.
173109
.
19.
Strobl
,
M.
,
Manke
,
I.
,
Kardjilov
,
N.
,
Hilger
,
A.
,
Dawson
,
M.
, and
Banhart
,
J.
,
2009
, “
Advances in Neutron Radiography and Tomography
,”
J. Phys. D: Appl. Phys.
,
42
(
24
), p.
243001
.
20.
Liu
,
Y. J.
,
Zhu
,
P. P.
,
Chen
,
B.
,
Wang
,
J. Y.
,
Yuan
,
Q. X.
,
Huang
,
W. X.
,
Shu
,
H.
,
Li
,
E. R.
,
Liu
,
X. S.
,
Zhang
,
K.
,
Ming
,
H.
, and
Wu
,
Z. Y.
,
2007
, “
A New Iterative Algorithm to Reconstruct the Refractive Index
,”
Phys. Med. Biol.
,
52
(
12
), pp.
L5
L13
.
21.
Gürsoy
,
D.
,
De Carlo
,
F.
,
Xiao
,
X.
, and
Jacobsen
,
C.
,
2014
, “
TomoPy: A Framework for the Analysis of Synchrotron Tomographic Data
,”
J. Synchrotron Radiat.
,
21
(
5
), pp.
1188
1193
.
22.
Munch
,
B.
,
Gasser
,
P.
,
Holzer
,
L.
, and
Flatt
,
R.
,
2006
, “
FIB-Nanotomography of Particulate Systems—Part II: Particle Recognition and Effect of Boundary Truncation
,”
J. Am. Ceram. Soc.
,
89
(
8
), pp.
2586
2595
.
23.
Münch
,
B.
, and
Holzer
,
L.
,
2008
, “
Contradicting Geometrical Concepts in Pore Size Analysis Attained With Electron Microscopy and Mercury Intrusion
,”
J. Am. Ceram. Soc.
,
91
(
12
), pp.
4059
4067
.
24.
Grew
,
K. N.
,
Peracchio
,
A. A.
,
Joshi
,
A. S.
,
Izzo
,
J. R.
, Jr.
, and
Chiu
,
W. K. S.
,
2010
, “
Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure—Part 1: Volumetric Measurements of the Heterogeneous Structure
,”
J. Power Sources
,
195
(
24
), pp.
7930
7942
.
25.
Grew
,
K. N.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2010
, “
Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure—Part 2: Quantitative Measurement of the Microstructure and Contributions to Transport Losses
,”
J. Power Sources
,
195
(
24
), pp.
7943
7958
.
26.
Alkemper
,
J.
, and
Voorhees
,
P. W.
,
2001
, “
Three-Dimensional Characterization of Dendritic Microstructures
,”
Acta Mater.
,
49
(
5
), pp.
897
902
.
27.
Kammer
,
D.
, and
Voorhees
,
P.
,
2006
, “
The Morphological Evolution of Dendritic Microstructures During Coarsening
,”
Acta Mater.
,
54
(
6
), pp.
1549
1558
.
28.
Epting
,
W. K.
,
Gelb
,
J.
, and
Litster
,
S.
,
2012
, “
Resolving the Three-Dimensional Microstructure of Polymer Electrolyte Fuel Cell Electrodes Using Nanometer-Scale X-Ray Computed Tomography
,”
Adv. Funct. Mater.
,
22
(
3
), pp.
555
560
.
29.
Babu
,
S. K.
,
Mohamed
,
A. I.
,
Whitacre
,
J. F.
, and
Litster
,
S.
,
2015
, “
Multiple Imaging Mode X-Ray Computed Tomography for Distinguishing Active and Inactive Phases in Lithium-Ion Battery Cathodes
,”
J. Power Sources
,
283
, pp.
314
319
.
30.
Kumar
,
A. S.
,
Mandal
,
P.
,
Zhang
,
Y.
, and
Litster
,
S.
,
2015
, “
Image Segmentation of Nanoscale Zernike Phase Contrast X-Ray Computed Tomography Images
,”
J. Appl. Phys.
,
117
(
18
), p.
183102
.
31.
Yang
,
F.
,
Liu
,
Y.
,
Martha
,
S. K.
,
Wu
,
Z.
,
Andrews
,
J. C.
,
Ice
,
G. E.
,
Pianetta
,
P.
, and
Nanda
,
J.
,
2014
, “
Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes With Cycling
,”
Nano Lett.
,
14
(
8
), pp.
4334
4341
.
32.
Weker
,
J. N.
,
Liu
,
N.
,
Misra
,
S.
,
Andrews
,
J. C.
,
Cui
,
Y.
, and
Toney
,
M. F.
,
2014
, “
In Situ Nanotomography and Operando Transmission X-Ray Microscopy of Micron-Sized Ge Particles
,”
Energy Environ. Sci.
,
7
(
8
), pp.
2771
2777
.
33.
Chao
,
S. C.
,
Yen
,
Y. C.
,
Song
,
Y. F.
,
Chen
,
Y. M.
,
Wu
,
H. C.
, and
Wu
,
N. L.
,
2010
, “
A Study on the Interior Microstructures of Working Sn Particle Electrode of Li-Ion Batteries by In Situ X-Ray Transmission Microscopy
,”
Electrochem. Commun.
,
12
(
2
), pp.
234
237
.
34.
Chao
,
S.-C.
,
Yen
,
Y.-C.
,
Song
,
Y.-F.
,
Sheu
,
H.-S.
,
Wu
,
H.-C.
, and
Wu
,
N.-L.
,
2011
, “
In Situ Transmission X-Ray Microscopy Study on Working SnO Anode Particle of Li-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
12
), pp.
A1335
A1339
.
35.
Nelson
,
J.
,
Misra
,
S.
,
Yang
,
Y.
,
Jackson
,
A.
,
Liu
,
Y.
,
Wang
,
H.
,
Dai
,
H.
,
Andrews
,
J. C.
,
Cui
,
Y.
, and
Toney
,
M. F.
,
2012
, “
In Operando X-Ray Diffraction and Transmission X-Ray Microscopy of Lithium Sulfur Batteries
,”
J. Am. Chem. Soc.
,
134
(
14
), pp.
6337
6343
.
36.
Ebner
,
M.
,
Geldmacher
,
F.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2013
, “
X-Ray Tomography of Porous, Transition Metal Oxide-Based Lithium-Ion Battery Electrodes
,”
Adv. Energy Mater.
,
3
(
7
), pp.
845
850
.
37.
Wang
,
J.
,
Chen-Wiegart
,
Y. K.
, and
Wang
,
J.
,
2014
, “
In Situ Three-Dimensional Synchrotron X-Ray Nanotomography of the (De)lithiation Processes in Tin Anodes
,”
Angew. Chem., Int. Ed.
,
53
(
17
), pp.
4460
4464
.
38.
Ebner
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
, and
Wood
,
V.
,
2013
, “
Visualization and Quantification of Electrochemical and Mechanical Degradation in Li-Ion Batteries
,”
Science
,
342
(
6159
), pp.
716
720
.
39.
Eastwood
,
D. S.
,
Yufit
,
V.
,
Gelb
,
J.
,
Gu
,
A.
,
Bradley
,
R. S.
,
Harris
,
S. J.
,
Brett
,
D. J. L.
,
Brandon
,
N. P.
,
Lee
,
P. D.
,
Withers
,
P. J.
, and
Shearing
,
P. R.
,
2014
, “
Lithiation-Induced Dilation Mapping in a Lithium-Ion Battery Electrode by 3D X-Ray Microscopy and Digital Volume Correlation
,”
Adv. Energy Mater.
,
4
(
4
), p. 1300506.
40.
Finegan
,
D. P.
,
Scheel
,
M.
,
Robinson
,
J. B.
,
Tjaden
,
B.
,
Hunt
,
I.
,
Mason
,
T. J.
,
Millichamp
,
J.
,
Di Michiel
,
M.
,
Offer
,
G. J.
,
Hinds
,
G.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2015
, “
In-Operando High-Speed Tomography of Lithium-Ion Batteries During Thermal Runaway
,”
Nat. Commun.
,
6
, p.
6924
.
41.
Wiedemann
,
A. H.
,
Goldin
,
G. M.
,
Barnett
,
S. A.
,
Zhu
,
H.
, and
Kee
,
R. J.
,
2013
, “
Effects of Three-Dimensional Cathode Microstructure on the Performance of Lithium-Ion Battery Cathodes
,”
Electrochim. Acta
,
88
(
0
), pp.
580
588
.
42.
Goldin
,
G. M.
,
Colclasure
,
A. M.
,
Wiedemann
,
A. H.
, and
Kee
,
R. J.
,
2012
, “
Three-Dimensional Particle-Resolved Models of Li-Ion Batteries to Assist the Evaluation of Empirical Parameters in One-Dimensional Models
,”
Electrochim. Acta
,
64
, pp.
118
129
.
43.
Park
,
J.
,
Lu
,
W.
, and
Sastry
,
A. M.
,
2011
, “
Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles Due to Coupled Phase Transition and Intercalation
,”
J. Electrochem. Soc.
,
158
(
2
), p.
A201
.
44.
Han
,
S.
,
Park
,
J.
,
Lu
,
W.
, and
Sastry
,
A. M.
,
2013
, “
Numerical Study of Grain Boundary Effect on Li+ Effective Diffusivity and Intercalation-Induced Stresses in Li-Ion Battery Active Materials
,”
J. Power Sources
,
240
, pp.
155
167
.
45.
Zhu
,
M.
,
Park
,
J.
, and
Sastry
,
A. M.
,
2012
, “
Fracture Analysis of the Cathode in Li-Ion Batteries: A Simulation Study
,”
J. Electrochem. Soc.
,
159
(
4
), pp.
A492
A498
.
46.
Kashkooli
,
A. G.
,
Farhad
,
S.
,
Lee
,
D. U.
,
Feng
,
K.
,
Litster
,
S.
,
Babu
,
S. K.
,
Zhu
,
L.
, and
Chen
,
Z.
,
2016
, “
Multiscale Modeling of Lithium-Ion Battery Electrodes Based on Nano-Scale X-Ray Computed Tomography
,”
J. Power Sources
,
307
, pp.
496
509
.
You do not currently have access to this content.