The performance, safety, and reliability of electrochemical energy storage and conversion systems based on Li-ion cells depend critically on the nature of heat transfer in Li-ion cells, which occurs over multiple length scales, ranging from thin material layers all the way to large battery packs. Thermal phenomena in Li-ion cells are also closely coupled with other transport phenomena such as ionic and charge transport, making this a challenging, multidisciplinary problem. This review paper presents a critical analysis of recent research literature related to experimental measurement of multiscale thermal transport in Li-ion cells. Recent research on several topics related to thermal transport is summarized, including temperature and thermal property measurements, heat generation measurements, thermal management, and thermal runaway measurements on Li-ion materials, cells, and battery packs. Key measurement techniques and challenges in each of these fields are discussed. Critical directions for future research in these fields are identified.

References

References
1.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
.
2.
Marsh
,
R. A.
,
Vukson
,
S.
,
Surampudi
,
S.
,
Ratnakumar
,
B. V.
,
Smart
,
M. C.
,
Manzo
,
M.
, and
Dalton
,
P. J.
,
2001
, “
Li Ion Batteries for Aerospace Applications
,”
J. Power Sources
,
97
, pp.
25
27
.
3.
Linden
,
D.
, and
Reddy
,
T. B.
,
2002
,
Handbook of Batteries
,
3rd ed.
,
McGraw-Hill
,
New York
.
4.
Khaligh
,
A.
, and
Li
,
Z.
,
2010
, “
Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art
,”
IEEE Trans. Veh. Technol.
,
59
(
6
), pp.
2806
2814
.
5.
Franco
,
J. J. L.
,
Boemo
,
E.
,
Castillo
,
E.
, and
Parrilla
,
L.
,
2010
, “
Ring Oscillators as Thermal Sensors in FPGAs: Experiments in Low Voltage
,” VI Southern Programmable Logic Conference (
SPL
), Ipojuca, Brazil, Mar. 24–26, pp.
133
137
.
6.
Diouf
,
B.
, and
Pode
,
R.
,
2015
, “
Potential of Lithium-Ion Batteries in Renewable Energy
,”
Renewable Energy
,
76
, pp.
375
380
.
7.
Goodenough
,
J. B.
, and
Park
,
K. S.
,
2013
, “
The Li-Ion Rechargeable Battery: A Perspective
,”
J. Am. Chem. Soc.
,
135
(
4
), pp.
1167
1176
.
8.
Wang
,
C. Y.
, and
Srinivasan
,
V.
,
2002
, “
Computational Battery Dynamics (CBD)—Electrochemical/Thermal Coupled Modeling and Multi-Scale Modeling
,”
J. Power Sources
,
110
(
2
), pp.
364
376
.
9.
Sushko
,
M. L.
,
Rosso
,
K. M.
,
Zhang
,
J. G.
, and
Liu
,
J.
,
2011
, “
Multiscale Simulations of Li Ion Conductivity in Solid Electrolyte
,”
J. Phys. Chem. Lett.
,
2
(
18
), pp.
2352
2356
.
10.
Northrop
,
P. W.
,
Ramadesigan
,
V.
,
De
,
S.
, and
Subramanian
,
V. R.
,
2011
, “
Coordinate Transformation, Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks
,”
J. Electrochem. Soc.
,
158
(
12
), pp.
A1461
A1477
.
11.
Wang
,
C. Y.
,
Gu
,
W. B.
, and
Liaw
,
B. Y.
,
1998
, “
Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development
,”
J. Electrochem. Soc.
,
145
(
10
), pp.
3407
3417
.
12.
Ouyang
,
C.
,
Shi
,
S.
,
Wang
,
Z.
,
Huang
,
X.
, and
Chen
,
L.
,
2004
, “
First-Principles Study of Li Ion Diffusion in LiFePO4
,”
Phys. Rev. B
,
69
(
10
), p.
104303
.
13.
Stephan
,
A. M.
, and
Nahm
,
K. S.
,
2006
, “
Review on Composite Polymer Electrolytes for Lithium Batteries
,”
Polymer
,
47
(
16
), pp.
5952
5964
.
14.
Etacheri
,
V.
,
Marom
,
R.
,
Elazari
,
R.
,
Salitra
,
G.
, and
Aurbach
,
D.
,
2011
, “
Challenges in the Development of Advanced Li-Ion Batteries: A Review
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3243
3262
.
15.
Zhang
,
S. S.
,
2007
, “
A Review on the Separators of Liquid Electrolyte Li-Ion Batteries
,”
J. Power Sources
,
164
(
1
), pp.
351
364
.
16.
Young
,
K.
,
Wang
,
C.
,
Wang
,
L. Y.
, and
Strunz
,
K.
,
2013
, “
Electric Vehicle Battery Technologies
,”
Electric Vehicle Integration Into Modern Power Networks
,
Springer
,
New York
, pp.
15
56
.
17.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
R1
R25
.
18.
Spotnitz
,
R.
, and
Franklin
,
J.
,
2003
, “
Abuse Behavior of High-Power, Lithium-Ion Cells
,”
J. Power Sources
,
113
(
1
), pp.
81
100
.
19.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
.
20.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.
21.
Pals
,
C. R.
, and
Newman
,
J.
,
1995
, “
Thermal Modeling of the Lithium/Polymer Battery I. Discharge Behavior of a Single Cell
,”
J. Electrochem. Soc.
,
142
(
10
), pp.
3274
3281
.
22.
Thomas
,
K. E.
, and
Newman
,
J.
,
2003
, “
Heats of Mixing and of Entropy in Porous Insertion Electrodes
,”
J. Power Sources
,
119
, pp.
844
849
.
23.
Srinivasan
,
V.
, and
Wang
,
C. Y.
,
2003
, “
Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells
,”
J. Electrochem. Soc.
,
150
(
1
), pp.
A98
A106
.
24.
Shah
,
K.
,
Drake
,
S. J.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2014
, “
Modeling of Steady-State Convective Cooling of Cylindrical Li-Ion Cells
,”
J. Power Sources
,
258
, pp.
374
381
.
25.
Shah
,
K.
,
Drake
,
S. J.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2014
, “
An Experimentally Validated Transient Thermal Model for Cylindrical Li-Ion Cells
,”
J. Power Sources
,
271
, pp.
262
268
.
26.
Shah
,
K.
, and
Jain
,
A.
,
2015
, “
Modeling of Steady‐State and Transient Thermal Performance of a Li‐Ion Cell With an Axial Fluidic Channel for Cooling
,”
Int. J. Energy Res.
,
39
(
4
), pp.
573
584
.
27.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2002
, “
A New Approach Toward Improved Low Temperature Performance of Li-Ion Battery
,”
Electrochem. Commun.
,
4
(
11
), pp.
928
932
.
28.
Ji
,
Y.
,
Zhang
,
Y.
, and
Wang
,
C. Y.
,
2013
, “
Li-Ion Cell Operation at Low Temperatures
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A636
A649
.
29.
Childs
,
P. R. N.
,
Greenwood
,
J. R.
, and
Long
,
C. A.
,
2000
, “
Review of Temperature Measurement
,”
Rev. Sci. Instrum.
,
71
(
8
), pp.
2959
2978
.
30.
Cooper
,
T. E.
,
Field
,
R. J.
, and
Meyer
,
J. F.
,
1975
, “
Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer
,”
ASME J. Heat Transfer
,
97
(
3
), pp.
442
450
.
31.
Raad
,
P. E.
,
Komarov
,
P. L.
, and
Bettiati
,
M. A.
,
2014
, “
Thermoreflectance Temperature Measurements for Optically Emitting Devices
,”
Microelectron. J.
,
45
(
5
), pp.
515
520
.
32.
Spinner
,
N. S.
,
Field
,
C. R.
,
Hammond
,
M. H.
,
Williams
,
B. A.
,
Myers
,
K. M.
,
Lubrano
,
A. L.
,
Rose-Pehrsson
,
S. L.
, and
Tuttle
,
S. G.
,
2015
, “
Physical and Chemical Analysis of Lithium-Ion Battery Cell-to-Cell Failure Events Inside Custom Fire Chamber
,”
J. Power Sources
,
279
, pp.
713
721
.
33.
Koo
,
B.
,
Goli
,
P.
,
Sumant
,
A. V.
,
dos Santos Claro
,
P. C.
,
Rajh
,
T.
,
Johnson
,
C. S.
,
Balandin
,
A. A.
, and
Shevchenko
,
E. V.
,
2014
, “
Toward Lithium Ion Batteries With Enhanced Thermal Conductivity
,”
ACS Nano
,
8
(
7
), pp.
7202
7207
.
34.
Drake
,
S. J.
,
Martin
,
M.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2015
, “
Heat Generation Rate Measurement in a Li-Ion Cell at Large C-Rates Through Temperature and Heat Flux Measurements
,”
J. Power Sources
,
285
, pp.
266
273
.
35.
Lin
,
X.
,
Perez
,
H. E.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Li
,
Y.
,
Anderson
,
R. D.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2013
, “
Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1745
1755
.
36.
Zhang
,
G.
,
Cao
,
L.
,
Ge
,
S.
,
Wang
,
C. Y.
,
Shaffer
,
C. E.
, and
Rahn
,
C. D.
,
2014
, “
In Situ Measurement of Radial Temperature Distributions in Cylindrical Li-Ion Cells
,”
J. Electrochem. Soc.
,
161
(
10
), pp.
A1499
A1507
.
37.
Forgez
,
C.
,
Do
,
D. V.
,
Friedrich
,
G.
,
Morcrette
,
M.
, and
Delacourt
,
C.
,
2010
, “
Thermal Modeling of a Cylindrical LiFePO4/Graphite Lithium-Ion Battery
,”
J. Power Sources
,
195
(
9
), pp.
2961
2968
.
38.
Kim
,
Y.
,
Mohan
,
S.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
, and
Ding
,
Y.
,
2014
, “
The Estimation of Temperature Distribution in Cylindrical Battery Cells Under Unknown Cooling Conditions
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2277
2286
.
39.
Richardson
,
R. R.
,
Ireland
,
P. T.
, and
Howey
,
D. A.
,
2014
, “
Battery Internal Temperature Estimation by Combined Impedance and Surface Temperature Measurement
,”
J. Power Sources
,
265
, pp.
254
261
.
40.
Li
,
Z.
,
Zhang
,
J.
,
Wu
,
B.
,
Huang
,
J.
,
Nie
,
Z.
,
Sun
,
Y.
,
An
,
F.
, and
Wu
,
N.
,
2013
, “
Examining Temporal and Spatial Variations of Internal Temperature in Large-Format Laminated Battery With Embedded Thermocouples
,”
J. Power Sources
,
241
, pp.
536
553
.
41.
Srinivasan
,
R.
,
Carkhuff
,
B. G.
,
Butler
,
M. H.
, and
Baisden
,
A. C.
,
2011
, “
Instantaneous Measurement of the Internal Temperature in Lithium-Ion Rechargeable Cells
,”
Electrochim. Acta
,
56
(
17
), pp.
6198
6204
.
42.
Srinivasan
,
R.
,
Carkhuff
,
B. G.
, and
Rogers
,
A. Q.
,
2012
, “
Lithium Battery Internal Temperature Sensor and SoC Monitor
,” The Electrochemical Society (
ECS
) 18th International Meeting on Lithium Batteries, Chicago, IL, June 19–24, Paper No. 1053.
43.
Srinivasan
,
R.
,
2012
, “
Monitoring Dynamic Thermal Behavior of the Carbon Anode in a Lithium-Ion Cell Using a Four-Probe Technique
,”
J. Power Sources
,
198
, pp.
351
358
.
44.
Schmidt
,
J. P.
,
Arnold
,
S.
,
Loges
,
A.
,
Werner
,
D.
,
Wetzel
,
T.
, and
Ivers-Tiffée
,
E.
,
2013
, “
Measurement of the Internal Cell Temperature Via Impedance: Evaluation and Application of a New Method
,”
J. Power Sources
,
243
, pp.
110
117
.
45.
Song
,
L.
, and
Evans
,
J. W.
,
1999
, “
Measurements of the Thermal Conductivity of Lithium Polymer Battery Composite Cathodes
,”
J. Electrochem. Soc.
,
146
(
3
), pp.
869
871
.
46.
Maleki
,
H.
,
Al Hallaj
,
S.
,
Selman
,
J. R.
,
Dinwiddie
,
R. B.
, and
Wang
,
H.
,
1999
, “
Thermal Properties of Lithium‐Ion Battery and Components
,”
J. Electrochem. Soc.
,
146
(
3
), pp.
947
954
.
47.
Cho
,
J.
,
Losego
,
M. D.
,
Zhang
,
H. G.
,
Kim
,
H.
,
Zuo
,
J.
,
Petrov
,
I.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2014
, “
Electrochemically Tunable Thermal Conductivity of Lithium Cobalt Oxide
,”
Nat. Commun.
,
5
, p.
4035
.
48.
Maleki
,
H.
,
Selman
,
J. R.
,
Dinwiddie
,
R. B.
, and
Wang
,
H.
,
2001
, “
High Thermal Conductivity Negative Electrode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
94
(
1
), pp.
26
35
.
49.
Goli
,
P.
,
Legedza
,
S.
,
Dhar
,
A.
,
Salgado
,
R.
,
Renteria
,
J.
, and
Balandin
,
A. A.
,
2014
, “
Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries
,”
J. Power Sources
,
248
, pp.
37
43
.
50.
Song
,
L.
,
Chen
,
Y.
, and
Evans
,
J. W.
,
1997
, “
Measurements of the Thermal Conductivity of Poly(Ethylene Oxide)‐Lithium Salt Electrolytes
,”
J. Electrochem. Soc.
,
144
(
11
), pp.
3797
3800
.
51.
Vishwakarma
,
V.
, and
Jain
,
A.
,
2014
, “
Measurement of In-Plane Thermal Conductivity and Heat Capacity of Separator in Li-Ion Cells Using a Transient DC Heating Method
,”
J. Power Sources
,
272
, pp.
378
385
.
52.
Yang
,
Y.
,
Huang
,
X.
,
Cao
,
Z.
, and
Chen
,
G.
,
2016
, “
Thermally Conductive Separator With Hierarchical Nano/Microstructures for Improving Thermal Management of Batteries
,”
Nano Energy
,
22
, pp.
301
309
.
53.
Maleki
,
H.
,
Wang
,
H.
,
Porter
,
W.
, and
Hallmark
,
J.
,
2014
, “
Li-Ion Polymer Cells Thermal Property Changes as a Function of Cycle-Life
,”
J. Power Sources
,
263
, pp.
223
230
.
54.
Ponnappan
,
R.
, and
Ravigururajan
,
T. S.
,
2004
, “
Contact Thermal Resistance of Li-Ion Cell Electrode Stack
,”
J. Power Sources
,
129
(
1
), pp.
7
13
.
55.
Vishwakarma
,
V.
,
Waghela
,
C.
,
Wei
,
Z.
,
Prasher
,
R.
,
Nagpure
,
S. C.
,
Li
,
J.
,
Liu
,
F.
,
Daniel
,
C.
, and
Jain
,
A.
,
2015
, “
Heat Transfer Enhancement in a Lithium-Ion Cell Through Improved Material-Level Thermal Transport
,”
J. Power Sources
,
300
, pp.
123
131
.
56.
Zhang
,
W.
,
Zhang
,
X.
,
Wang
,
C.
,
Yu
,
G.
, and
Yang
,
C.
,
2014
, “
Experimental and Computational Research on the Thermal Conductivities of Li/SOCl2 Batteries
,”
J. Electrochem. Soc.
,
161
(
5
), pp.
A675
A681
.
57.
Drake
,
S. J.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2014
, “
Measurement of Anisotropic Thermophysical Properties of Cylindrical Li-Ion Cells
,”
J. Power Sources
,
252
, pp.
298
304
.
58.
Spinner
,
N. S.
,
Mazurick
,
R.
,
Brandon
,
A.
,
Rose-Pehrsson
,
S. L.
, and
Tuttle
,
S. G.
,
2015
, “
Analytical, Numerical and Experimental Determination of Thermophysical Properties of Commercial 18650 LiCoO2 Lithium-Ion Battery
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2789
A2795
.
59.
Bazinski
,
S. J.
, and
Wang
,
X.
,
2015
, “
Experimental Study on the Influence of Temperature and State-of-Charge on the Thermophysical Properties of an LFP Pouch Cell
,”
J. Power Sources
,
293
, pp.
283
291
.
60.
Barsoukov
,
E.
,
Jang
,
J. H.
, and
Lee
,
H.
,
2002
, “
Thermal Impedance Spectroscopy for Li-Ion Batteries Using Heat-Pulse Response Analysis
,”
J. Power Sources
,
109
(
2
), pp.
313
320
.
61.
Fleckenstein
,
M.
,
Fischer
,
S.
,
Bohlen
,
O.
, and
Bäker
,
B.
,
2013
, “
Thermal Impedance Spectroscopy—A Method for the Thermal Characterization of High Power Battery Cells
,”
J. Power Sources
,
223
, pp.
259
267
.
62.
Chen
,
Y.
, and
Evans
,
J. W.
,
1994
, “
Thermal Analysis of Lithium Polymer Electrolyte Batteries by a Two Dimensional Model—Thermal Behaviour and Design Optimization
,”
Electrochim. Acta
,
39
(
4
), pp.
517
526
.
63.
Rao
,
L.
, and
Newman
,
J.
,
1997
, “
Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems
,”
J. Electrochem. Soc.
,
144
(
8
), pp.
2697
2704
.
64.
Chen
,
Y.
, and
Evans
,
J. W.
,
1996
, “
Thermal Analysis of Lithium‐Ion Batteries
,”
J. Electrochem. Soc.
,
143
(
9
), pp.
2708
2712
.
65.
Hong
,
J. S.
,
Maleki
,
H.
,
Al Hallaj
,
S.
,
Redey
,
L.
, and
Selman
,
J. R.
,
1998
, “
Electrochemical‐Calorimetric Studies of Lithium‐Ion Cells
,”
J. Electrochem. Soc.
,
145
(
5
), pp.
1489
1501
.
66.
Ye
,
Y.
,
Saw
,
L. H.
,
Shi
,
Y.
,
Somasundaram
,
K.
, and
Tay
,
A. A.
,
2014
, “
Effect of Thermal Contact Resistances on Fast Charging of Large Format Lithium Ion Batteries
,”
Electrochim. Acta
,
134
, pp.
327
337
.
67.
Al Hallaj
,
S.
,
Prakash
,
J.
, and
Selman
,
J. R.
,
2000
, “
Characterization of Commercial Li-Ion Batteries Using Electrochemical–Calorimetric Measurements
,”
J. Power Sources
,
87
(
1
), pp.
186
194
.
68.
Zhao
,
R.
,
Gu
,
J.
, and
Liu
,
J.
,
2014
, “
An Investigation on the Significance of Reversible Heat to the Thermal Behavior of Lithium Ion Battery Through Simulations
,”
J. Power Sources
,
266
, pp.
422
43
2
69.
Botte
,
G. G.
,
Subramanian
,
V. R.
, and
White
,
R. E.
,
2000
, “
Mathematical Modeling of Secondary Lithium Batteries
,”
Electrochimica Acta
,
45
(15), pp.
2595
2609
.
70.
Chen
,
K.
,
Unsworth
,
G.
, and
Li
,
X.
,
2014
, “
Measurements of Heat Generation in Prismatic Li-Ion Batteries
,”
J. Power Sources
,
261
, pp.
28
37
.
71.
Onda
,
K.
,
Kameyama
,
H.
,
Hanamoto
,
T.
, and
Ito
,
K.
,
2003
, “
Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries
,”
J. Electrochem. Soc.
,
150
(
3
), pp.
A285
A291
.
72.
Kobayashi
,
Y.
,
Miyashiro
,
H.
,
Kumai
,
K.
,
Takei
,
K.
,
Iwahori
,
T.
, and
Uchida
,
I.
,
2002
, “
Precise Electrochemical Calorimetry of LiCoO2/Graphite Lithium-Ion Cell Understanding Thermal Behavior and Estimation of Degradation Mechanism
,”
J. Electrochem. Soc.
,
149
(
8
), pp.
A978
A982
.
73.
Bang
,
H.
,
Yang
,
H.
,
Sun
,
Y. K.
, and
Prakash
,
J.
,
2005
, “
In Situ Studies of LixMn2O4 and LixAl0.17Mn1.83O3.97S0.03 Cathode by IMC
,”
J. Electrochem. Soc.
,
152
(
2
), pp.
A421
A428
.
74.
Al Hallaj
,
S.
,
Venkatachalapathy
,
R.
,
Prakash
,
J.
, and
Selman
,
J. R.
,
2000
, “
Entropy Changes due to Structural Transformation in the Graphite Anode and Phase Change of the LiCoO2 Cathode
,”
J. Electrochem. Soc.
,
147
(
7
), pp.
2432
2436
.
75.
Kim
,
U. S.
,
Shin
,
C. B.
, and
Kim
,
C. S.
,
2008
, “
Effect of Electrode Configuration on the Thermal Behavior of a Lithium-Polymer Battery
,”
J. Power Sources
,
180
(
2
), pp.
909
916
.
76.
Lu
,
W.
,
Belharouak
,
I.
,
Vissers
,
D.
, and
Amine
,
K.
,
2006
, “
In Situ Thermal Study of Li1 + x [Ni1/3Co1/3Mn1/3] 1 − xO2 Using Isothermal Micro-Clorimetric Techniques
,”
J. Electrochem. Soc.
,
153
(
11
), pp.
A2147
A2151
.
77.
Lu
,
W.
, and
Prakash
,
J.
,
2003
, “
In Situ Measurements of Heat Generation in a Li/Mesocarbon Microbead Half-Cell
,”
J. Electrochem. Soc.
,
150
(
3
), pp.
A262
A266
.
78.
Saito
,
Y.
,
Kanari
,
K.
, and
Takano
,
K.
,
1997
, “
Thermal Studies of a Lithium-Ion Battery
,”
J. Power Sources
,
68
(
2
), pp.
451
454
.
79.
Yang
,
H.
, and
Prakash
,
J.
,
2004
, “
Determination of the Reversible and Irreversible Heats of a LiNi0.8Co0.15Al0.05O2/Natural Graphite Cell Using Electrochemical-Calorimetric Technique
,”
J. Electrochem. Soc.
,
151
(
8
), pp.
A1222
A1229
.
80.
Vaidyanathan
,
H.
,
Kelly
,
W. H.
, and
Rao
,
G.
,
2001
, “
Heat Dissipation in a Lithium Ion Cell
,”
J. Power Sources
,
93
(
1
), pp.
112
122
.
81.
Kobayashi
,
Y.
,
Kihira
,
N.
,
Takei
,
K.
,
Miyashiro
,
H.
,
Kumai
,
K.
,
Terada
,
N.
, and
Ishikawa
,
R.
,
1999
, “
Electrochemical and Calorimetric Approach to Spinel Lithium Manganese Oxide
,”
J. Power Sources
,
81
, pp.
463
466
.
82.
Nanda
,
J.
,
Martha
,
S. K.
,
Porter
,
W. D.
,
Wang
,
H.
,
Dudney
,
N. J.
,
Radin
,
M. D.
, and
Siegel
,
D. J.
,
2014
, “
Thermophysical Properties of LiFePO4 Cathodes With Carbonized Pitch Coatings and Organic Binders: Experiments and First-Principles Modeling
,”
J. Power Sources
,
251
, pp.
8
13
.
83.
Zhang
,
S.
,
Zhao
,
R.
,
Liu
,
J.
, and
Gu
,
J.
,
2014
, “
Investigation on a Hydrogel Based Passive Thermal Management System for Lithium Ion Batteries
,”
Energy
,
68
, pp.
854
861
.
84.
Mohammadian
,
S. K.
,
He
,
Y. L.
, and
Zhang
,
Y.
,
2015
, “
Internal Cooling of a Lithium-Ion Battery Using Electrolyte as Coolant Through Microchannels Embedded Inside the Electrodes
,”
J. Power Sources
,
293
, pp.
458
466
.
85.
Park
,
H.
,
2013
, “
A Design of Air Flow Configuration for Cooling Lithium Ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
.
86.
Fathabadi
,
H.
,
2014
, “
A Novel Design Including Cooling Media for Lithium-Ion Batteries Pack Used in Hybrid and Electric Vehicles
,”
J. Power Sources
,
245
, pp.
495
500
.
87.
Fan
,
L.
,
Khodadadi
,
J. M.
, and
Pesaran
,
A. A.
,
2013
, “
A Parametric Study on Thermal Management of an Air-Cooled Lithium-Ion Battery Module for Plug-In Hybrid Electric Vehicles
,”
J. Power Sources
,
238
, pp.
301
312
.
88.
Yang
,
N.
,
Zhang
,
X.
,
Li
,
G.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
.
89.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.
90.
Wu
,
M. S.
,
Liu
,
K. H.
,
Wang
,
Y. Y.
, and
Wan
,
C. C.
,
2002
, “
Heat Dissipation Design for Lithium-Ion Batteries
,”
J. Power Sources
,
109
(
1
), pp.
160
166
.
91.
Giuliano
,
M. R.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
,
2012
, “
Experimental Study of an Air-Cooled Thermal Management System for High Capacity Lithium–Titanate Batteries
,”
J. Power Sources
,
216
, pp.
345
352
.
92.
Xu
,
X. M.
, and
He
,
R.
,
2013
, “
Research on the Heat Dissipation Performance of Battery Pack Based on Forced Air Cooling
,”
J. Power Sources
,
240
, pp.
33
41
.
93.
Yu
,
K.
,
Yang
,
X.
,
Cheng
,
Y.
, and
Li
,
C.
,
2014
, “
Thermal Analysis and Two-Directional Air Flow Thermal Management for Lithium-Ion Battery Pack
,”
J. Power Sources
,
270
, pp.
193
200
.
94.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
.
95.
Jin
,
L. W.
,
Lee
,
P. S.
,
Kong
,
X. X.
,
Fan
,
Y.
, and
Chou
,
S. K.
,
2014
, “
Ultra-Thin Minichannel LCP for EV Battery Thermal Management
,”
Appl. Energy
,
113
, pp.
1786
1794
.
96.
Karimi
,
G.
, and
Dehghan
,
A. R.
,
2012
, “
Thermal Management Analysis of a Lithium-Ion Battery Pack Using Flow Network Approach
,”
Int. J. Mech. Eng. Mechatronics
,
1
(
1
), pp.
88
94
.
97.
Tong
,
W.
,
Somasundaram
,
K.
,
Birgersson
,
E.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2015
, “
Numerical Investigation of Water Cooling for a Lithium-Ion Bipolar Battery Pack
,”
Int. J. Therm. Sci.
,
94
, pp.
259
269
.
98.
Nieto
,
N.
,
Díaz
,
L.
,
Gastelurrutia
,
J.
,
Blanco
,
F.
,
Ramos
,
J. C.
, and
Rivas
,
A.
,
2014
, “
Novel Thermal Management System Design Methodology for Power Lithium-Ion Battery
,”
J. Power Sources
,
272
, pp.
291
302
.
99.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
.
100.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
.
101.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2014
, “
Influence of Operating Conditions on the Optimum Design of Electric Vehicle Battery Cooling Plates
,”
J. Power Sources
,
245
, pp.
644
655
.
102.
Bandhauer
,
T. M.
, and
Garimella
,
S.
,
2013
, “
Passive, Internal Thermal Management System for Batteries Using Microscale Liquid–Vapor Phase Change
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
756
769
.
103.
Hirano
,
H.
,
Tajima
,
T.
,
Hasegawa
,
T.
,
Sekiguchi
,
T.
, and
Uchino
,
M.
,
2014
, “
Boiling Liquid Battery Cooling for Electric Vehicle
,”
IEEE Transportation Electrification Asia-Pacific Conference
(
ITEC Asia-Pacific
), Beijing, China, Aug. 31–Sept. 3.
104.
van Gils
,
R. W.
,
Danilov
,
D.
,
Notten
,
P. H. L.
,
Speetjens
,
M. F. M.
, and
Nijmeijer
,
H.
,
2014
, “
Battery Thermal Management by Boiling Heat-Transfer
,”
Energy Convers. Manage.
,
79
, pp.
9
17
.
105.
Yang
,
X.
,
Yan
,
Y. Y.
, and
Mullen
,
D.
,
2012
, “
Recent Developments of Lightweight, High Performance Heat Pipes
,”
Appl. Therm. Eng.
,
33
, pp.
1
14
.
106.
Chang
,
Y. W.
,
Cheng
,
C. H.
,
Wang
,
J. C.
, and
Chen
,
S. L.
,
2008
, “
Heat Pipe for Cooling of Electronic Equipment
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3398
3404
.
107.
Rao
,
Z.
,
Wang
,
S.
,
Wu
,
M.
,
Lin
,
Z.
, and
Li
,
F.
,
2013
, “
Experimental Investigation on Thermal Management of Electric Vehicle Battery With Heat Pipe
,”
Energy Convers. Manage.
,
65
, pp.
92
97
.
108.
Rao
,
Z.
,
Huo
,
Y.
, and
Liu
,
X.
,
2014
, “
Experimental Study of an OHP-Cooled Thermal Management System for Electric Vehicle Power Battery
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
20
26
.
109.
Wang
,
Q.
,
Jiang
,
B.
,
Xue
,
Q. F.
,
Sun
,
H. L.
,
Li
,
B.
,
Zou
,
H. M.
, and
Yan
,
Y. Y.
,
2015
, “
Experimental Investigation on EV Battery Cooling and Heating by Heat Pipes
,”
Appl. Therm. Eng.
,
88
, pp.
54
60
.
110.
Tran
,
T. H.
,
Harmand
,
S.
, and
Sahut
,
B.
,
2014
, “
Experimental Investigation on Heat Pipe Cooling for Hybrid Electric Vehicle and Electric Vehicle Lithium-Ion Battery
,”
J. Power Sources
,
265
, pp.
262
272
.
111.
Tran
,
T. H.
,
Harmand
,
S.
,
Desmet
,
B.
, and
Filangi
,
S.
,
2014
, “
Experimental Investigation on the Feasibility of Heat Pipe Cooling for HEV/EV Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
551
558
.
112.
Zhao
,
R.
,
Gu
,
J.
, and
Liu
,
J.
,
2015
, “
An Experimental Study of Heat Pipe Thermal Management System With Wet Cooling Method for Lithium Ion Batteries
,”
J. Power Sources
,
273
, pp.
1089
1097
.
113.
Burban
,
G.
,
Ayel
,
V.
,
Alexandre
,
A.
,
Lagonotte
,
P.
,
Bertin
,
Y.
, and
Romestant
,
C.
,
2013
, “
Experimental Investigation of a Pulsating Heat Pipe for Hybrid Vehicle Applications
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
94
103
.
114.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
115.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4554
4571
.
116.
Zhou
,
D.
,
Zhao
,
C. Y.
, and
Tian
,
Y.
,
2012
, “
Review on Thermal Energy Storage With Phase Change Materials (PCMs) in Building Applications
,”
Appl. Energy
,
92
, pp.
593
605
.
117.
Waqas
,
A.
, and
Din
,
Z. U.
,
2013
, “
Phase Change Material (PCM) Storage for Free Cooling of Buildings—A Review
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
607
625
.
118.
Zalba
,
B.
,
Marı́n
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
119.
Al Hallaj
,
S.
, and
Selman
,
J. R.
,
2000
, “
A Novel Thermal Management System for Electric Vehicle Batteries Using Phase‐Change Material
,”
J. Electrochem. Soc.
,
147
(
9
), pp.
3231
3236
.
120.
Khateeb
,
S. A.
,
Farid
,
M. M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2004
, “
Design and Simulation of a Lithium-Ion Battery With a Phase Change Material Thermal Management System for an Electric Scooter
,”
J. Power Sources
,
128
(
2
), pp.
292
307
.
121.
Khateeb
,
S. A.
,
Amiruddin
,
S.
,
Farid
,
M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2005
, “
Thermal Management of Li-Ion Battery With Phase Change Material for Electric Scooters: Experimental Validation
,”
J. Power Sources
,
142
(
1
), pp.
345
353
.
122.
Mills
,
A.
,
Farid
,
M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2006
, “
Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix
,”
Appl. Therm. Eng.
,
26
(
14
), pp.
1652
1661
.
123.
Mills
,
A.
, and
Al-Hallaj
,
S.
,
2005
, “
Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs
,”
J. Power Sources
,
141
(
2
), pp.
307
315
.
124.
Alrashdan
,
A.
,
Mayyas
,
A. T.
, and
Al-Hallaj
,
S.
,
2010
, “
Thermo-Mechanical Behaviors of the Expanded Graphite-Phase Change Material Matrix Used for Thermal Management of Li-Ion Battery Packs
,”
J. Mater. Process. Technol.
,
210
(
1
), pp.
174
179
.
125.
Lin
,
C.
,
Xu
,
S.
,
Chang
,
G.
, and
Liu
,
J.
,
2015
, “
Experiment and Simulation of a LiFePO4 Battery Pack With a Passive Thermal Management System Using Composite Phase Change Material and Graphite Sheets
,”
J. Power Sources
,
275
, pp.
742
749
.
126.
Babapoor
,
A.
,
Azizi
,
M.
, and
Karimi
,
G.
,
2015
, “
Thermal Management of a Li-Ion Battery Using Carbon Fiber-PCM Composites
,”
Appl. Therm. Eng.
,
82
, pp.
281
290
.
127.
Hémery
,
C. V.
,
Pra
,
F.
,
Robin
,
J. F.
, and
Marty
,
P.
,
2014
, “
Experimental Performances of a Battery Thermal Management System Using a Phase Change Material
,”
J. Power Sources
,
270
, pp.
349
358
.
128.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
.
129.
Lisbona
,
D.
, and
Snee
,
T.
,
2011
, “
A Review of Hazards Associated With Primary Lithium and Lithium-Ion Batteries
,”
Process Saf. Environ. Prot.
,
89
(
6
), pp.
434
442
.
130.
Bro
,
P.
, and
Levy
,
S. C.
,
2013
,
Battery Hazards and Accident Prevention
,
Springer Science & Business Media
, New York.
131.
Park
,
H. E.
,
Hong
,
C. H.
, and
Yoon
,
W. Y.
,
2008
, “
The Effect of Internal Resistance on Dendritic Growth on Lithium Metal Electrodes in the Lithium Secondary Batteries
,”
J. Power Sources
,
178
(
2
), pp.
765
768
.
132.
Semenov
,
N. N.
,
1959
,
Some Problems in Chemical Kinetics in Reactivity
,
Princeton University Press
,
Princeton, NJ
.
133.
Maleki
,
H.
,
Deng
,
G.
,
Anani
,
A.
, and
Howard
,
J.
,
1999
, “
Thermal Stability Studies of Li‐Ion Cells and Components
,”
J. Electrochem. Soc.
,
146
(
9
), pp.
3224
3229
.
134.
Tobishima
,
S. I.
,
Takei
,
K.
,
Sakurai
,
Y.
, and
Yamaki
,
J. I.
,
2000
, “
Lithium Ion Cell Safety
,”
J. Power Sources
,
90
(
2
), pp.
188
195
.
135.
Dahn
,
J. R.
,
Fuller
,
E. W.
,
Obrovac
,
M.
, and
Von Sacken
,
U.
,
1994
, “
Thermal Stability of LixCoO2, LixNiO2 and λ-MnO2 and Consequences for the Safety of Li-Ion Cells
,”
Solid State Ionics
,
69
(
3
), pp.
265
270
.
136.
Belov
,
D.
, and
Yang
,
M. H.
,
2008
, “
Investigation of the Kinetic Mechanism in Overcharge Process for Li-Ion Battery
,”
Solid State Ionics
,
179
(
27
), pp.
1816
1821
.
137.
Feng
,
X.
,
Fang
,
M.
,
He
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Wang
,
H.
, and
Zhang
,
M.
,
2014
, “
Thermal Runaway Features of Large Format Prismatic Lithium Ion Battery Using Extended Volume Accelerating Rate Calorimetry
,”
J. Power Sources
,
255
, pp.
294
301
.
138.
Yang
,
H.
,
Bang
,
H.
,
Amine
,
K.
, and
Prakash
,
J.
,
2005
, “
Investigations of the Exothermic Reactions of Natural Graphite Anode for Li-Ion Batteries During Thermal Runaway
,”
J. Electrochem. Soc.
,
152
(
1
), pp.
A73
A79
.
139.
Yang
,
H.
,
Zhuang
,
G. V.
, and
Ross
,
P. N.
,
2006
, “
Thermal Stability of LiPF6 Salt and Li-Ion Battery Electrolytes Containing LiPF6
,”
J. Power Sources
,
161
(
1
), pp.
573
579
.
140.
Roth
,
E. P.
, and
Doughty
,
D. H.
,
2004
, “
Thermal Abuse Performance of High-Power 18650 Li-Ion Cells
,”
J. Power Sources
,
128
(
2
), pp.
308
318
.
141.
Sun
,
Y. K.
,
Myung
,
S. T.
,
Park
,
B. C.
,
Prakash
,
J.
,
Belharouak
,
I.
, and
Amine
,
K.
,
2009
, “
High-Energy Cathode Material for Long-Life and Safe Lithium Batteries
,”
Nat. Mater.
,
8
(
4
), pp.
320
324
.
142.
Allcorn
,
E.
, and
Manthiram
,
A.
,
2015
, “
Thermal Stability of Sb and Cu2Sb Anodes in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
162
(
9
), pp.
A1778
A1786
.
143.
Kim
,
M.
, and
Park
,
J. H.
,
2012
, “
Inorganic Thin Layer Coated Porous Separator With High Thermal Stability for Safety Reinforced Li-Ion Battery
,”
J. Power Sources
,
212
, pp.
22
27
.
144.
Cho
,
T. H.
,
Tanaka
,
M.
,
Onishi
,
H.
,
Kondo
,
Y.
,
Nakamura
,
T.
,
Yamazaki
,
H.
,
Tanase
,
S.
, and
Sakai
,
T.
,
2008
, “
Battery Performances and Thermal Stability of Polyacrylonitrile Nano-Fiber-Based Nonwoven Separators for Li-Ion Battery
,”
J. Power Sources
,
181
(
1
), pp.
155
160
.
145.
Zhang
,
S. S.
,
2006
, “
An Unique Lithium Salt for the Improved Electrolyte of Li-Ion Battery
,”
Electrochem. Commun.
,
8
(
9
), pp.
1423
1428
.
146.
Mandal
,
B. K.
,
Padhi
,
A. K.
,
Shi
,
Z.
,
Chakraborty
,
S.
, and
Filler
,
R.
,
2006
, “
Thermal Runaway Inhibitors for Lithium Battery Electrolytes
,”
J. Power Sources
,
161
(
2
), pp.
1341
1345
.
147.
Yao
,
X. L.
,
Xie
,
S.
,
Chen
,
C. H.
,
Wang
,
Q. S.
,
Sun
,
J. H.
,
Li
,
Y. L.
, and
Lu
,
S. X.
,
2005
, “
Comparative Study of Trimethyl Phosphite and Trimethyl Phosphate as Electrolyte Additives in Lithium Ion Batteries
,”
J. Power Sources
,
144
(
1
), pp.
170
175
.
148.
Leising
,
R. A.
,
Palazzo
,
M. J.
,
Takeuchi
,
E. S.
, and
Takeuchi
,
K. J.
,
2001
, “
Abuse Testing of Lithium-Ion Batteries: Characterization of the Overcharge Reaction of LiCoO2/Graphite Cells
,”
J. Electrochem. Soc.
,
148
(
8
), pp.
A838
A844
.
149.
Maleki
,
H.
, and
Howard
,
J. N.
,
2009
, “
Internal Short Circuit in Li-Ion Cells
,”
J. Power Sources
,
191
(
2
), pp.
568
574
.
150.
Cai
,
W.
,
Wang
,
H.
,
Maleki
,
H.
,
Howard
,
J.
, and
Lara-Curzio
,
E.
,
2011
, “
Experimental Simulation of Internal Short Circuit in Li-Ion and Li-Ion-Polymer Cells
,”
J. Power Sources
,
196
(
18
), pp.
7779
7783
.
151.
Orendorff
,
C. J.
,
Roth
,
E. P.
, and
Nagasubramanian
,
G.
,
2011
, “
Experimental Triggers for Internal Short Circuits in Lithium-Ion Cells
,”
J. Power Sources
,
196
(
15
), pp.
6554
6558
.
152.
Uchida
,
I.
,
Ishikawa
,
H.
,
Mohamedi
,
M.
, and
Umeda
,
M.
,
2003
, “
AC-Impedance Measurements During Thermal Runaway Process in Several Lithium/Polymer Batteries
,”
J. Power Sources
,
119
, pp.
821
825
.
153.
Kitoh
,
K.
, and
Nemoto
,
H.
,
1999
, “
100 Wh Large Size Li-Ion Batteries and Safety Tests
,”
J. Power Sources
,
81
, pp.
887
890
.
154.
Lopez
,
C. F.
,
Jeevarajan
,
J. A.
, and
Mukherjee
,
P. P.
,
2015
, “
Characterization of Lithium-Ion Battery Thermal Abuse Behavior Using Experimental and Computational Analysis
,”
J. Electrochem. Soc.
,
162
(
10
), pp.
A2163
A2173
.
155.
Guo
,
G.
,
Long
,
B.
,
Cheng
,
B.
,
Zhou
,
S.
,
Xu
,
P.
, and
Cao
,
B.
,
2010
, “
Three-Dimensional Thermal Finite Element Modeling of Lithium-Ion Battery in Thermal Abuse Application
,”
J. Power Sources
,
195
(
8
), pp.
2393
2398
.
156.
Hatchard
,
T. D.
,
MacNeil
,
D. D.
,
Basu
,
A.
, and
Dahn
,
J. R.
,
2001
, “
Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
148
(
7
), pp.
A755
A761
.
157.
Hatchard
,
T. D.
,
MacNeil
,
D. D.
,
Stevens
,
D. A.
,
Christensen
,
L.
, and
Dahn
,
J. R.
,
2000
, “
Importance of Heat Transfer by Radiation in Li-Ion Batteries During Thermal Abuse
,”
Electrochem. Solid-State Lett.
,
3
(
7
), pp.
305
308
.
158.
Lopez
,
C. F.
,
Jeevarajan
,
J. A.
, and
Mukherjee
,
P. P.
,
2015
, “
Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
,”
J. Electrochem. Soc.
,
162
(
9
), pp.
A1905
A1915
.
159.
Ping
,
P.
,
Wang
,
Q.
,
Sun
,
J.
,
Xiang
,
H.
, and
Chen
,
C.
,
2010
, “
Thermal Stabilities of Some Lithium Salts and Their Electrolyte Solutions With and Without Contact to a LiFePO4 Electrode
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
A1170
A1176
.
You do not currently have access to this content.