Experimental studies and characterization of the interfacial impedance of a novel solvent-casted solid polymer electrolyte (SPE) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) ceramic bilayer electrolyte are conducted. Overall, resistance of the bilayer electrolyte decreased compared to single LATP ceramic electrolyte. The mechanism of the enhanced ion transportation at the interface is analyzed and discussed. Using the as-prepared multilayer electrolyte, all-solid-state lithium ion batteries (ASSLIBs) were fabricated with lithium metal as anode and LiMn2O4 (LMO) as cathode material. The charge/discharge properties and impedance of the cell at different temperatures were investigated. This work demonstrates the feasibility and potential of using a multilayer electrolyte structure for ASSLIBs with flexible geometries and dimensions for design.

References

References
1.
Goodenough
,
J.
, and
Park
,
K. S.
,
2013
, “
The Li-Ion Rechargeable Battery: A Perspective
,”
J. Am. Chem. Soc.
,
135
(
4
), pp.
1167
1176
.
2.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
3.
Armand
,
M.
, and
Tarascon
,
J. M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
4.
Golubkov
,
A. W.
,
Fuchs
,
D.
,
Wagner
,
J.
,
Wiltsche
,
H.
,
Stangl
,
C.
,
Fauler
,
G.
,
Voitic
,
G.
,
Thalera
,
A.
, and
Hackere
,
V.
,
2014
, “
Thermal-Runaway Experiments on Consumer Li-Ion Batteries With Metal-Oxide and Olivin-Type Cathodes
,”
RSC Adv.
,
4
(
7
), pp.
3633
3642
.
5.
Rosso
,
M.
,
Brissot
,
C.
,
Teyssot
,
A.
,
Dollé
,
M.
,
Sannier
,
L.
,
Tarascon
,
J. M.
,
Bouchet
,
R.
, and
Lascaud
,
S.
,
2006
, “
Dendrite Short-Circuit and Fuse Effect on Li/Polymer/Li Cells
,”
Electrochim. Acta
,
51
(
25
), pp.
5334
5340
.
6.
Wen
,
J.
,
Yu
,
Y.
, and
Chen
,
C.
,
2012
, “
A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions
,”
Mater. Express
,
2
(
3
), pp.
197
212
.
7.
Song
,
J. Y.
,
Wang
,
Y. Y.
, and
Wan
,
C. C.
,
1999
, “
Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries
,”
J. Power Sources
,
77
(
2
), pp.
183
197
.
8.
Takada
,
K.
,
2013
, “
Progress and Prospective of Solid-State Lithium Batteries
,”
Acta Mater.
,
61
(
3
), pp.
759
770
.
9.
Li
,
Q.
,
Itoh
,
T.
,
Imanishi
,
N.
,
Hirano
,
A.
,
Takeda
,
Y.
, and
Yamamoto
,
O.
,
2003
, “
All Solid Lithium Polymer Batteries With a Novel Composite Polymer Electrolyte
,”
Solid State Ionics
,
159
(
1
), pp.
97
109
.
10.
Appetecchi
,
G. B.
,
Hassoun
,
J.
,
Scrosati
,
B.
,
Croce
,
F.
,
Cassel
,
F.
, and
Salomon
,
M.
,
2003
, “
Hot-Pressed, Solvent-Free, Nanocomposite, PEO-Based Electrolyte Membranes—II: All Solid-State Li/LiFePO4 Polymer Batteries
,”
J. Power Sources
,
124
(
1
), pp.
246
253
.
11.
Kuratomi
,
J.
,
Iguchi
,
T.
,
Bando
,
T.
,
Aihara
,
Y.
,
Ono
,
T.
, and
Kuwana
,
K.
,
2001
, “
Development of Solid Polymer Lithium Secondary Batteries
,”
J. Power Sources
,
97–98
, pp.
801
803
.
12.
Fergus
,
J. W.
,
2010
, “
Ceramic and Polymeric Solid Electrolytes for Lithium-Ion Batteries
,”
J. Power Sources
,
195
(
15
), pp.
4554
4569
.
13.
Knauth
,
P.
,
2009
, “
Inorganic Solid Li Ion Conductors: An Overview
,”
Solid State Ionics
,
180
(
14–16
), pp.
911
916
.
14.
Tenhaeff
,
W. E.
,
Perry
,
K. A.
, and
Dudney
,
N. J.
,
2012
, “
Impedance Characterization of Li Ion Transport at the Interface Between Laminated Ceramic and Polymeric Electrolytes
,”
J. Electrochem. Soc.
,
159
(
12
), pp.
A2118
A2123
.
15.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
16.
Zheng
,
G. Y.
,
Lee
,
S. W.
,
Liang
,
Z.
,
Lee
,
H. W.
,
Yan
,
K.
,
Yao
,
H. B.
,
Wang
,
H. T.
,
Li
,
W. Y.
,
Chu
,
S.
, and
Cui
,
Y.
,
2014
, “
Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes
,”
Nat. Nanotechnol.
,
9
(
8
), pp.
618
623
.
17.
Heitjans
,
P.
, and
Indris
,
S.
,
2001
, “
Diffusion and Ionic Conduction in Nanocrystalline Ceramics
,”
MRS Proceedings
,
676
.
18.
Druger
,
S. D.
,
Rather
,
M. A.
, and
Nitzan
,
A.
,
1983
, “
Polymeric Solid Electrolytes: Dynamic Bond Percolation and Free Volume Models for Diffusion
,”
Solid State Ionics
,
9–10
(Part 2), pp.
1115
1120
.
19.
Croce
,
F.
,
Appetecchi
,
G. B.
,
Persi
,
L.
, and
Scrosati
,
B.
,
1998
, “
Nanocomposite Polymer Electrolytes for Lithium Batteries
,”
Nature
,
394
(30), pp.
456
458
.
20.
Croce
,
F.
,
Settimi
,
L.
, and
Scrosati
,
B.
,
2006
, “
Superacid ZrO2-Added, Composite Polymer Electrolytes With Improved Transport Properties
,”
Electrochem. Commun.
,
8
(
2
), pp.
364
368
.
21.
Weston
,
J. E.
, and
Steele
,
B. C. H.
,
1982
, “
Effects of Inert Fillers on the Mechanical and Electrochemical Properties of Lithium Salt-Poly(Ethylene Oxide) Polymer Electrolytes
,”
Solid State Ionics
,
7
(
1
), pp.
75
79
.
22.
Syzdek
,
J.
,
Armand
,
M.
,
Falkowski
,
P.
,
Gizowska
,
M.
,
Karłowicz
,
M.
,
Łukaszuk
,
Ł.
,
Marcinek
,
M.
,
Zalewska
,
A.
,
Szafran
,
M.
,
Masquelier
,
C.
,
Tarascon
,
J. M.
,
Wieczorek
,
W. G.
, and
Zukowska
,
Z. G.
,
2011
, “
Reversed Phase Composite Polymeric Electrolytes Based on Poly(Oxyethylene)
,”
Chem. Mater.
,
23
(
7
), pp.
1785
1797
.
23.
Vorrey
,
S.
, and
Teeters
,
D.
,
2003
, “
Study of the Ion Conduction of Polymer Electrolytes Confined in Micro and Nanopores
,”
Electrochim. Acta
,
48
(
14
), pp.
2137
2141
.
24.
Abudakka
,
M.
,
Decker
,
D. S.
,
Sutherlin
,
L. T.
, and
Teeters
,
D.
,
2014
, “
Ceramic/Polymer Interpenetrating Networks Exhibiting Increased Ionic Conductivity With Temperature Control of Ion Conduction for Thermal Runaway Protection
,”
Int. J. Hydrogen Energy
,
39
(
6
), pp.
2988
2996
.
25.
Stephan
,
A. M.
,
Nahm
,
K. S.
,
Kulandainathan
,
M. A.
,
Ravi
,
G.
, and
Wilson
,
J.
,
2006
, “
Poly(Vinylidene Fluoride-Hexafluoropropylene) (PVdF-HFP) Based Composite Electrolytes for Lithium Batteries
,”
Eur. Polym. J.
,
42
(
8
), pp.
1728
1734
.
26.
Appetecchi
,
G. B.
, and
Passerini
,
S.
,
2000
, “
PEO-Carbon Composite Lithium Polymer Electrolyte
,”
Electrochim. Acta
,
45
(
13
), pp.
2139
2145
.
27.
Nairn
,
K. M.
,
Best
,
A. S.
,
Newman
,
P. J.
,
MacFarlane
,
D. R.
, and
Forsyth
,
M.
,
1999
, “
Ceramic-Polymer Interface in Composite Electrolytes of Lithium Aluminium Titanium Phosphate and Polyetherurethane Polymer Electrolyte
,”
Solid State Ionics
,
121
(
1
), pp.
115
119
.
28.
Abe
,
T.
,
Ohtsuka
,
M.
,
Sagane
,
F.
,
Iriyama
,
Y.
, and
Ogumi
,
Z.
,
2004
, “
Lithium Ion Transfer at the Interface Between Lithium-Ion-Conductive Solid Crystalline Electrolyte and Polymer Electrolyte
,”
J. Electrochem. Soc.
,
151
(
11
), pp.
A1950
A1953
.
29.
Tenhaeff
,
W. E.
,
Yu
,
X.
,
Hong
,
K.
,
Perry
,
K. A.
, and
Dudney
,
N. J.
,
2011
, “
Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes for Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
10
), pp.
A1143
A1149
.
30.
Asl
,
N. M.
,
Keith
,
J.
,
Lim
,
C.
,
Zhu
,
L.
, and
Kim
,
Y.
,
2012
, “
Inorganic Solid/Organic Liquid Hybrid Electrolyte for Use in Li-Ion Battery
,”
Electrochim. Acta
,
79
, pp.
8
16
.
31.
Jackman
,
S. D.
, and
Cutler
,
R. A.
,
2013
, “
Stability of NaSICON-Type Li1.3Al0.3Ti1.7P3O12 in Aqueous Solutions
,”
J. Power Sources
,
230
, pp.
251
260
.
32.
Sandrine
,
D.
,
Aude
,
P.
,
Laurent
,
P.
,
Philippe
,
V.
,
Viviane
,
T. P. R.
,
Pascal
,
L.
,
Pierre-Louis
,
T.
,
Patrice
,
S.
, and
Florence
,
A.
,
2013
, “
Lithium Conducting Solid Electrolyte Li1.3Al0.3Ti1.7(PO4)3 Obtained Via Solution Chemistry
,”
J. Eur. Ceram. Soc.
,
33
(
6
), pp.
1145
1153
.
33.
Kumar
,
B.
, and
Scanlon
,
L. G.
,
1994
, “
Polymer-Ceramic Composite Electrolytes
,”
J. Power Sources
,
52
(
2
), pp.
261
268
.
34.
Zhang
,
M.
,
Takahashi
,
K.
,
Uechi
,
I.
,
Takeda
,
Y.
,
Yamamoto
,
O.
,
Im
,
D.
,
Lee
,
D.
,
Chi
,
B.
,
Pu
,
J.
,
Li
,
J.
, and
Imanishi
,
N.
,
2013
, “
Water-Stable Lithium Anode With Li1.4Al0.4Ge1.6(PO4)3-TiO2 Sheet Prepared by Tape Casting Method for Lithium-Air Batteries
,”
J. Power Sources
,
235
, pp.
117
121
.
You do not currently have access to this content.