This paper details the research into axis symmetric architecture (ASA) proton exchange membrane (PEM) fuel cells possessing nonprismatic cylindrical architecture. Advantages of the ASA include improved fuel flow, reduced sealing area and weight, and increased power densities. Numerical and analytical studies will show improvements to flow characteristics. The ASA design facilitates natural convective flow to promote improved reactant availability and the prototypes created also show the ease of manufacture and assembly. ASA designs, unlike traditional fuel cells, do not require clamping plates and fastening mechanisms and lead to prototypes with reduced size, weight, and cost.

References

References
1.
Farooque
,
M.
, and
Maru
,
H. C.
,
2001
, “
Fuel Cells—The Clean and Efficient Power Generators
,”
Proc. IEEE
,
89
(
12
), pp.
1819
1829
.
2.
Prater
,
K. B.
,
1994
, “
Polymer Electrolyte Fuel Cells: A Review of Recent Developments
,”
J. Power Sources
,
51
(
1–2
), pp.
129
144
.
3.
Smith
,
W.
,
2000
, “
Role of Fuel Cells in Energy Storage
,”
J. Power Sources
,
86
(
1
), pp.
74
83
.
4.
He
,
W.
,
Yi
,
J. S.
, and
Van Nguyen
,
T.
,
2000
, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
,
46
(
10
), pp.
2053
2064
.
5.
Jeon
,
D. H.
,
Greenway
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2008
, “
The Effect of Serpentine Flow-Field Designs on PEM Fuel Cell Performance
,”
Int. J. Hydrogen Energy
,
33
(
3
), pp.
1052
1066
.
6.
Nguyen
,
P. T.
,
Berning
,
T.
, and
Djilali
,
N.
,
2004
, “
Computational Model of a PEM Fuel Cell With Serpentine Gas Flow Channels
,”
J. Power Sources
,
130
(
1–2
), pp.
149
157
.
7.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
,
2001
, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
94
(
1
), pp.
40
50
.
8.
Rowe
,
A.
, and
Li
,
X.
,
2001
, “
Mathematical Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
102
(
1–2
), pp.
82
96
.
9.
Shan
,
Y.
, and
Choe
,
S. Y.
,
2005
, “
A High Dynamic PEM Fuel Cell Model With Temperature Effects
,”
J. Power Sources
,
145
(
1
), pp.
30
39
.
10.
Sivertsen
,
B. R.
, and
Djilali
,
N.
,
2005
, “
CFD-Based Modelling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
141
(
1
), pp.
65
78
.
11.
Ismail
,
M. S.
,
Ingham
,
D. B.
,
Hughes
,
K. J.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2013
, “
Thermal Modelling of the Cathode in Air-Breathing PEM Fuel Cells
,”
Appl. Energy
,
111
, pp.
529
537
.
12.
Ismail
,
M. S.
,
Ingham
,
D. B.
,
Hughes
,
K. J.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2014
, “
An Efficient Mathematical Model for Air-Breathing PEM Fuel Cells
,”
Appl. Energy
,
135
, pp.
490
503
.
13.
Baschuk
,
J. J.
, and
Li
,
X.
,
2000
, “
Modelling of Polymer Electrolyte Membrane Fuel Cells With Variable Degrees of Water Flooding
,”
J. Power Sources
,
86
(
1
), pp.
181
196
.
14.
Li
,
X.
,
Sabir
,
I.
, and
Park
,
J.
,
2007
, “
A Flow Channel Design Procedure for PEM Fuel Cells With Effective Water Removal
,”
J. Power Sources
,
163
(
2
), pp.
933
942
.
15.
You
,
L.
, and
Liu
,
H.
,
2002
, “
A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
,
45
(
11
), pp.
2277
2287
.
16.
Ferreira-Aparicio
,
P.
, and
Chaparro
,
A. M.
,
2014
, “
Novel Dead-Ended Anode Design for Self-Regulating Humidification in an Air-Breathing H2-PEM Fuel Cell
,”
14th Polymer Electrolyte Fuel Cell Symposium
,
PEFC 2014
—226th ECS Meeting, Cancun, Mexico, Oct. 5–9, 2014, Electrochemical Society, pp.
945
950
.
17.
Kumar
,
P. M.
, and
Parthasarathy
,
V.
,
2013
, “
A Passive Method of Water Management for an Air-Breathing Proton Exchange Membrane Fuel Cell
,”
Energy
,
51
, pp.
457
461
.
18.
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Hooper
,
M. A. I.
,
Jensen
,
H. M.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
,
2000
, “
Development and Application of a Generalized Steady-State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
,
86
(
1
), pp.
173
180
.
19.
Um
,
S.
, and
Wang
,
C. Y.
,
2004
, “
Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
125
(
1
), pp.
40
51
.
20.
Wang
,
C.
,
Nehrir
,
M. H.
, and
Shaw
,
S. R.
,
2005
, “
Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits
,”
IEEE Trans. Energy Convers.
,
20
(
2
), pp.
442
451
.
21.
Li
,
J.
,
Cai
,
W.
,
Zhang
,
Y.
,
Xu
,
G.
, and
Cheng
,
H.
,
2015
, “
3D-Branched Rigid-Flexible Hybrid Sulfonated Polyamide for Proton Exchange Membranes (PEMs) in Fuel Cell Applications
,”
Energy Technol.
,
3
(
2
), pp.
155
161
.
22.
Bazylak
,
A.
,
Sinton
,
D.
,
Liu
,
Z. S.
, and
Djilali
,
N.
,
2007
, “
Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers
,”
J. Power Sources
,
163
(
2
), pp.
784
792
.
23.
Pharoah
,
J. G.
,
2005
, “
On the Permeability of Gas Diffusion Media Used in PEM Fuel Cells
,”
J. Power Sources
,
144
(
1
), pp.
77
82
.
24.
Shimpalee
,
S.
,
Greenway
,
S.
, and
Van Zee
,
J. W.
,
2006
, “
The Impact of Channel Path Length on PEMFC Flow-Field Design
,”
J. Power Sources
,
160
(
1
), pp.
398
406
.
25.
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2007
, “
Numerical Studies on Rib and Channel Dimension of Flow-Field on PEMFC Performance
,”
Int. J. Hydrogen Energy
,
32
(
7
), pp.
842
856
.
26.
Spernjak
,
D.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
,
2007
, “
Experimental Investigation of Liquid Water Formation and Transport in a Transparent Single-Serpentine PEM Fuel Cell
,”
J. Power Sources
,
170
(
2
), pp.
334
344
.
27.
Wang
,
L.
,
Husar
,
A.
,
Zhou
,
T.
, and
Liu
,
H.
,
2003
, “
A Parametric Study of PEM Fuel Cell Performances
,”
Int. J. Hydrogen Energy
,
28
(
11
), pp.
1263
1272
.
28.
Wang
,
L.
, and
Liu
,
H.
,
2004
, “
Performance Studies of PEM Fuel Cells With Interdigitated Flow Fields
,”
J. Power Sources
,
134
(
2
), pp.
185
196
.
29.
Kandlikar
,
S. G.
, and
Lu
,
Z.
,
2009
, “
Thermal Management Issues in a PEMFC Stack—A Brief Review of Current Status
,”
Appl. Therm. Eng.
,
29
(
7
), pp.
1276
1280
.
30.
Satija
,
R.
,
Jacobson
,
D. L.
,
Arif
,
M.
, and
Werner
,
S. A.
,
2004
, “
In Situ Neutron Imaging Technique for Evaluation of Water Management Systems in Operating PEM Fuel Cells
,”
J. Power Sources
,
129
(
2
), pp.
238
245
.
31.
Williamson
,
Z. R.
,
Kim
,
D.
,
Kwon
,
K.
,
Chun
,
D.
,
Lee
,
T.
, and
Squibb
,
C. W.
,
2013
, “
Evaluation of Fin Structure Effects on a Heated Air-Breathing Polymer Electrolyte Membrane (PEM) Fuel Cell
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
54
61
.
32.
Tang
,
H.
,
Qi
,
Z.
,
Ramani
,
M.
, and
Elter
,
J. F.
,
2006
, “
PEM Fuel Cell Cathode Carbon Corrosion Due to the Formation of Air/Fuel Boundary at the Anode
,”
J. Power Sources
,
158
(
2
), pp.
1306
1312
.
33.
Biesdorf
,
J.
,
Zamel
,
N.
, and
Kurz
,
T.
,
2014
, “
Influence of Air Contaminants on Planar, Self-Breathing Hydrogen PEM Fuel Cells in an Outdoor Environment
,”
J. Power Sources
,
247
, pp.
339
345
.
34.
Hamelin
,
J.
,
Agbossou
,
K.
,
Laperrière
,
A.
,
Laurencelle
,
F.
, and
Bose
,
T. K.
,
2001
, “
Dynamic Behavior of a PEM Fuel Cell Stack for Stationary Applications
,”
Int. J. Hydrogen Energy
,
26
(
6
), pp.
625
629
.
35.
El-Emam
,
S. H.
,
Mousa
,
A. A.
, and
Awad
,
M. M.
,
2015
, “
Effects of Stack Orientation and Vibration on the Performance of PEM Fuel Cell
,”
Int. J. Energy Res.
,
39
(
1
), pp.
75
83
.
36.
Fernandez-Moreno
,
J.
,
Guelbenzu
,
G.
,
Martin
,
A. J.
,
Folgado
,
M. A.
,
Ferreira-Aparicio
,
P.
, and
Chaparro
,
A. M.
,
2013
, “
A Portable System Powered With Hydrogen and One Single Air-Breathing PEM Fuel Cell
,”
Appl. Energy
,
109
, pp.
60
66
.
37.
Borup
,
R. L.
,
Davey
,
J. R.
,
Garzon
,
F. H.
,
Wood
,
D. L.
, and
Inbody
,
M. A.
,
2006
, “
PEM Fuel Cell Electrocatalyst Durability Measurements
,”
J. Power Sources
,
163
(
1
), pp.
76
81
.
38.
Cai
,
M.
,
Ruthkosky
,
M. S.
,
Merzougui
,
B.
,
Swathirajan
,
S.
,
Balogh
,
M. P.
, and
Oh
,
S. H.
,
2006
, “
Investigation of Thermal and Electrochemical Degradation of Fuel Cell Catalysts
,”
J. Power Sources
,
160
(
2
), pp.
977
986
.
39.
Collier
,
A.
,
Wang
,
H.
,
Zi Yuan
,
X.
,
Zhang
,
J.
, and
Wilkinson
,
D. P.
,
2006
, “
Degradation of Polymer Electrolyte Membranes
,”
Int. J. Hydrogen Energy
,
31
(
13
), pp.
1838
1854
.
40.
Colón-Mercado
,
H. R.
, and
Popov
,
B. N.
,
2006
, “
Stability of Platinum Based Alloy Cathode Catalysts in PEM Fuel Cells
,”
J. Power Sources
,
155
(
2
), pp.
253
263
.
41.
Curtin
,
D. E.
,
Lousenberg
,
R. D.
,
Henry
,
T. J.
,
Tangeman
,
P. C.
, and
Tisack
,
M. E.
,
2004
, “
Advanced Materials for Improved PEMFC Performance and Life
,”
J. Power Sources
,
131
(
1–2
), pp.
41
48
.
42.
Qi
,
Z.
,
He
,
C.
, and
Kaufman
,
A.
,
2002
, “
Effect of CO in the Anode Fuel on the Performance of PEM Fuel Cell Cathode
,”
J. Power Sources
,
111
(
2
), pp.
239
247
.
43.
Kim
,
H.
,
Subramanian
,
N. P.
, and
Popov
,
B. N.
,
2004
, “
Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition
,”
J. Power Sources
,
138
(
1–2
), pp.
14
24
.
44.
Barbir
,
F.
, and
Gómez
,
T.
,
1997
, “
Efficiency and Economics of Proton Exchange Membrane (PEM) Fuel Cells
,”
Int. J. Hydrogen Energy
,
22
(
10–11
), pp.
1027
1037
.
45.
Bar-On
,
I.
,
Kirchain
,
R.
, and
Roth
,
R.
,
2002
, “
Technical Cost Analysis for PEM Fuel Cells
,”
J. Power Sources
,
109
(
1
), pp.
71
75
.
46.
Lipman
,
T. E.
,
Edwards
,
J. L.
, and
Kammen
,
D. M.
,
2004
, “
Fuel Cell System Economics: Comparing the Costs of Generating Power With Stationary and Motor Vehicle PEM Fuel Cell Systems
,”
Energy Policy
,
32
(
1
), pp.
101
125
.
47.
Chalk
,
S. G.
,
Miller
,
J. F.
, and
Wagner
,
F. W.
,
2000
, “
Challenges for Fuel Cells in Transport Applications
,”
J. Power Sources
,
86
(
1
), pp.
40
51
.
48.
Cleghorn
,
S. J. C.
,
Ren
,
X.
,
Springer
,
T. E.
,
Wilson
,
M. S.
,
Zawodzinski
,
C.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1997
, “
PEM Fuel Cells for Transportation and Stationary Power Generation Applications
,”
Int. J. Hydrogen Energy
,
22
(
12
), pp.
1137
1144
.
49.
Nallathambi
,
V.
,
Lee
,
J. W.
,
Kumaraguru
,
S. P.
,
Wu
,
G.
, and
Popov
,
B. N.
,
2008
, “
Development of High Performance Carbon Composite Catalyst for Oxygen Reduction Reaction in PEM Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
183
(
1
), pp.
34
42
.
50.
Wang
,
B.
,
2005
, “
Recent Development of Non-Platinum Catalysts for Oxygen Reduction Reaction
,”
J. Power Sources
,
152
(
1–2
), pp.
1
15
.
51.
Wood
,
T. E.
,
Tan
,
Z.
,
Schmoeckel
,
A. K.
,
O'Neill
,
D.
, and
Atanasoski
,
R.
,
2008
, “
Non-Precious Metal Oxygen Reduction Catalyst for PEM Fuel Cells Based on Nitroaniline Precursor
,”
J. Power Sources
,
178
(
2
), pp.
510
516
.
52.
Blakley
,
T. J.
,
Jayne
,
K. D.
, and
Kimble
,
M. C.
,
2006
, “
Spiral-Wound PEM Fuel Cells for Portable Applications
,”
Proton Exchange Membrane Fuel Cells 6—210th Electrochemical Society Meeting
, pp.
1187
1195
.
53.
Bullecks
,
B.
,
Rengaswamy
,
R.
,
Bhattacharyya
,
D.
, and
Campbell
,
G.
,
2011
, “
Development of a Cylindrical PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
36
(
1
), pp.
713
719
.
54.
Meyers
,
J. P.
, and
Maynard
,
H. L.
,
2002
, “
Design Considerations for Miniaturized PEM Fuel Cells
,”
J. Power Sources
,
109
(
1
), pp.
76
88
.
You do not currently have access to this content.