The performance of a hydrogen storage prototype loaded with AB5H6 hydride, whose equilibrium pressure makes it suitable for both feeding a H2/air proton exchange membrane (PEM) fuel cell and being charged directly from a low-pressure water electrolyzer, interacting thermally with the fuel cell exhaust air, is reported. The nominal 70 L hydrogen storage capacity of the prototype suffices for hydrogen delivery at 0.5 L min−1, which allows a power supply of 50 W for 140 min from the H2/air fuel cell in the absence of thermal interaction. The storage prototype was characterized by monitoring the internal pressure and the temperatures of the external wall and at the center inside the container at different hydrogen discharge conditions. The responses of the integrated system after either immersing the metal hydride container in air or exposing it to the fuel cell hot exhaust air stream under forced convection were compared. The system shows the best performance when the heat generated at the fuel cell is used to increase the metal hydride container temperature, allowing the operation of the fuel cell at 280 W for 16 min at a high hydrogen flow rate of 4 L min−1.

References

References
1.
Hosseini
,
S. E.
, and
Wahid
,
M. A.
,
2016
, “
Hydrogen Production From Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development
,”
Renewable Sustainable Energy Rev.
,
57
(
1
), pp.
850
866
.
2.
Eudy
,
L.
,
Post
,
M.
, and
Gikakis
,
C.
,
2015
, “
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015
,” Technical Report No. NREL/TP-5400-64974.
3.
Davis
,
S. C.
,
Williams
,
S. E.
,
Boundy
,
R. G.
, and
Moore
,
S.
,
2016
, “
2015 Vehicle Technologies Market Report
,”
Technical Report No. ORNL/TM-2016/124
.
4.
Carmo
,
M.
,
Fritz
,
D. L.
,
Mergel
,
J.
, and
Stolten
,
D.
,
2013
, “
A Comprehensive Review on PEM Water Electrolysis
,”
Int. J. Hydrogen Energy
,
38
(
12
), pp.
4901
4934
.
5.
Satyapal
,
S.
,
Petrovic
,
J.
,
Read
,
C.
,
Thomas
,
G.
, and
Ordaz
,
G.
,
2007
, “
The U.S. Department of Energy's National Hydrogen Storage Project: Progress Towards Meeting Hydrogen-Powered Vehicle Requirements
,”
Catal. Today
,
120
(
3–4
), pp.
246
256
.
6.
Sandrock
,
G.
, and
Bowman
,
R. C.
, Jr
.,
2003
, “
Gas-Based Hydride Applications: Recent Progress and Future Needs
,”
J. Alloys Compd.
,
356–357
(
1
), pp.
794
799
.
7.
Mohan
,
G.
,
Prakash Maiya
,
M.
, and
Srinivasa Murthy
,
S.
,
2010
, “
The Performance Simulation of Air-Cooled Hydrogen Storage Device With Plate Fins
,”
Int. J. Low-Carbon Technol.
,
5
(
1
), pp.
25
34
.
8.
Gadre
,
S. A.
,
Ebner
,
A. D.
, and
Ritter
,
J. A.
,
2005
, “
Two Dimensional Model for the Design of Metal Hydride Hydrogen Storage Systems
,”
Adsorption
,
11
(
1
), pp.
871
876
.
9.
Gadre
,
S. A.
,
Ebner
,
A. D.
,
Al-Muhtaseb
,
S. A.
, and
Ritter
,
J. A.
,
2003
, “
Practical Modeling of Metal Hydride Hydrogen Storage Systems
,”
Ind. Eng. Chem. Res.
,
42
(
8
), pp.
1713
1722
.
10.
Andreasen
,
G.
,
Melnichuk
,
M.
,
Ramos
,
S.
,
Corso
,
H. L.
,
Visintin
,
A.
,
Triaca
,
W. E.
, and
Peretti
,
H. A.
,
2013
, “
Hydrogen Desorption From a Hydride Container Under Different Heat Exchange Conditions
,”
Int. J. Hydrogen Energy
,
38
(
30
), pp.
13352
13359
.
11.
Delhomme
,
B.
,
Lanzini
,
A.
,
Ortigoza-Villalba
,
G. A.
,
Nachev
,
S.
,
de Rango
,
P.
,
Santarelli
,
M.
,
Marty
,
P.
, and
Leone
,
P.
,
2013
, “
Coupling and Thermal Integration of a Solid Oxide Fuel Cell With a Magnesium Hydride Tank
,”
Int. J. Hydrogen Energy
,
38
(
11
), pp.
4740
4747
.
12.
Khaitan
,
S. K.
, and
Raju
,
M.
,
2012
, “
Discharge Dynamics of Coupled Fuel Cell and Metal Hydride Hydrogen Storage Bed for Small Wind Hybrid Systems
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2344
2352
.
13.
Mellouli
,
S.
,
Askri
,
F.
,
Dhaou
,
H.
,
Jemni
,
A.
, and
Ben Nasrallah
,
S.
,
2010
, “
Numerical Simulation of Heat and Mass Transfer in Metal Hydride Hydrogen Storage Tanks for Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
35
(
4
), pp.
1693
1705
.
14.
MacDonald
,
B. D.
, and
Rowe
,
A. M.
,
2006
, “
A Thermally Coupled Metal Hydride Hydrogen Storage and Fuel Cell System
,”
J. Power Sources
,
161
(
1
), pp.
346
355
.
15.
MacDonald
,
B. D.
, and
Rowe
,
A. M.
,
2006
, “
Impacts of External Heat Transfer Enhancements on Metal Hydride Storage Tanks
,”
Int. J. Hydrogen Energy
,
31
(
12
), pp.
1721
1731
.
16.
Jiang
,
Z.
,
Dougal
,
R. A.
,
Liu
,
S.
,
Gadre
,
S. A.
,
Ebner
,
A. D.
, and
Ritter
,
J. A.
,
2005
, “
Simulation of a Thermally Coupled Metal-Hydride Hydrogen Storage and Fuel Cell System
,”
J. Power Sources
,
142
(
1–2
), pp.
92
102
.
17.
Førde
,
T.
,
Eriksen
,
J.
,
Pettersen
,
A. G.
,
Vie
,
P. J. S.
, and
Ulleberg
,
Ø.
,
2009
, “
Thermal Integration of a Metal Hydride Storage Unit and a PEM Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6730
6739
.
18.
Bossi
,
C.
,
Del Corno
,
A.
,
Scagliotti
,
M.
, and
Valli
,
C.
,
2007
, “
Characterisation of a 3 kW PEFC Power System Coupled With a Metal Hydride H2 Storage
,”
J. Power Sources
,
171
(
1
), pp.
122
129
.
19.
Melnichuk
,
M.
,
Andreasen
,
G.
,
Corso
,
H. L.
,
Visintin
,
A.
, and
Peretti
,
H. A.
,
2008
, “
Study and Characterization of a Metal Hydride Container
,”
Int. J. Hydrogen Energy
,
33
(
13
), pp.
3571
3575
.
20.
Goodell
,
P. D.
,
Sandrock
,
G. D.
, and
Huston
,
E. L.
,
1980
, “
Kinetic and Dynamic Aspects of Rechargeable Metal Hydrides
,”
J. Less Common Met.
,
73
(
1
), pp.
135
142
.
21.
Ballard Power Systems, Inc.
,
2011
, “
Product Manual and Integration Guide
,” FCgenVR -1020ACS, MAN5100319-0A,
Burnaby, BC
,
Canada
.
22.
Rodríguez
,
D.
,
2000
, “
Estudio y optimización de aleaciones almacenadoras de hidrógeno
,” Ph.D. thesis,
Balseiro Intitute-Universidad Nacional de Cuyo
,
Bariloche, Argentina
.
You do not currently have access to this content.