The poor cyclability problem of SnS2 anodes in Li-ion batteries (LIB) is tackled for the first time by surface coatings with TiO2 via atomic layer deposition (ALD). ALD is capable to achieve uniform, conformal nanoscale coatings onto entire SnS2 electrodes, and enhance their cycling stability and rate performance. From our study, we found that the bare electrode delivers capacities eventually down to 219.2 mA h g−1 over 50 cycles, while the ALD TiO2-coated gains a final capacity of 323.7 mA h g−1 (47.7% higher). Electrochemical impedance analyses reveal that the improvement is ascribed to the smaller charge transfer resistance and formation of thinner solid–electrolyte interfaces (SEI) in the coated electrode, thanks to its better structural integrity and less electrolyte decomposition in the presence of protective coatings.

References

References
1.
Jana
,
M. K.
,
Rajendra
,
H. B.
,
Bhattacharyya
,
A. J.
, and
Biswas
,
K.
,
2014
, “
Green Ionothermal Synthesis of Hierarchical Nanostructures of SnS2 and Their Li-Ion Storage Properties
,”
CrystEngComm
,
16
(
19
), pp.
3994
4000
.
2.
Guan
,
D.
,
Li
,
J.
,
Gao
,
X.
, and
Yuan
,
C.
,
2015
, “
Carbon Nanotube-Assisted Growth of Single-/Multilayer SnS2 and SnO2 Nanoflakes for High-Performance Lithium Storage
,”
RSC Adv.
,
5
(
72
), pp.
58514
58521
.
3.
Chaki
,
S. H.
,
Deshpande
,
M. P.
,
Trivedi
,
D. P.
,
Tailor
,
J. P.
,
Chaudhary
,
M. D.
, and
Kanchan
,
M.
,
2013
, “
Wet Chemical Synthesis and Characterization of SnS2 Nanoparticles
,”
Appl. Nanosci.
,
3
(
3
), pp.
189
195
.
4.
Huang
,
Y.
,
Ling
,
C.
,
Chen
,
X.
,
Zhou
,
D.
, and
Wang
,
S.
,
2015
, “
SnS2 Nanotubes: A Promising Candidate for the Anode Material for Lithium Ion Batteries
,”
RSC Adv.
,
5
(
41
), pp.
32505
32510
.
5.
Du
,
Y.
,
Yin
,
Z.
,
Rui
,
X.
,
Zeng
,
Z.
,
Wu
,
X.
,
Liu
,
J.
,
Zhu
,
Y.
,
Zhu
,
J.
,
Huang
,
X.
,
Yan
,
Q.
, and
Zhang
,
H.
,
2013
, “
A Facile, Relative Green and Inexpensive Synthetic Approach Toward Large-Scale Production of SnS2 Nanoplates for High-Performance Lithium-Ion Batteries
,”
Nanoscale
,
5
(
4
), pp.
1456
1459
.
6.
Guan
,
D.
,
Li
,
J.
,
Gao
,
X.
,
Xie
,
Y.
, and
Yuan
,
C.
,
2016
, “
Growth Characteristics and Influencing Factors of 3D Hierarchical Flower-Like SnS2 Nanostructures and Their Superior Lithium-Ion Intercalation Performance
,”
J. Alloys. Compd.
,
658
, pp.
190
197
.
7.
Luo
,
B.
,
Fang
,
Y.
,
Wang
,
B.
,
Zhou
,
J.
,
Song
,
H.
, and
Zhi
,
L.
,
2012
, “
Two Dimensional Graphene–SnS2 Hybrids With Superior Rate Capability for Lithium Ion Storage
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5226
5230
.
8.
Zhang
,
Z.
,
Shao
,
C.
,
Li
,
X.
,
Sun
,
Y.
,
Zhang
,
M.
,
Mu
,
J.
,
Zhang
,
P.
,
Guo
,
Z.
, and
Liu
,
Y.
,
2013
, “
Hierarchical Assembly of Ultrathin Hexagonal SnS2 Nanosheets Onto Electrospun TiO2 Nanofibers: Enhanced Photocatalytic Activity Based on Photoinduced Interfacial Charge Transfer
,”
Nanoscale
,
5
(
2
), pp.
606
618
.
9.
Kim
,
H. S.
,
Chung
,
Y. H.
,
Kang
,
S. H.
, and
Sung
,
Y. E.
,
2009
, “
Electrochemical Behavior of Carbon-Coated SnS2 for Use as the Anode in Lithium-Ion Batteries
,”
Electrochim. Acta
,
54
(
13
), pp.
3606
3610
.
10.
Wang
,
G.
,
Peng
,
J.
,
Zhang
,
L.
,
Zhang
,
J.
,
Dai
,
B.
,
Zhu
,
M.
,
Xia
,
L.
, and
Yu
,
F.
,
2015
, “
Two-Dimensional SnS2@PANI Nanoplates With High Capacity and Excellent Stability for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
3
(
7
), pp.
3659
3666
.
11.
George
,
S. M.
,
2010
, “
Atomic Layer Deposition: An Overview
,”
Chem. Rev.
,
110
(
1
), pp.
111
131
.
12.
Zhang
,
L.
,
Prosser
,
J. H.
,
Feng
,
G.
, and
Lee
,
D.
,
2012
, “
Mechanical Properties of Atomic Layer Deposition-Reinforced Nanoparticle Thin Films
,”
Nanoscale
,
4
(
20
), pp.
6543
6552
.
13.
Liu
,
J.
, and
Sun
,
X.
,
2015
, “
Elegant Design of Electrode and Electrode/Electrolyte Interface in Lithium-Ion Batteries by Atomic Layer Deposition
,”
Nanotechnology
,
26
(
2
), p.
024001
.
14.
Lotfabad
,
E. M.
,
Kalisvaart
,
P.
,
Cui
,
K.
,
Kohandehghan
,
A.
,
Kupsta
,
M.
,
Olsen
,
B.
, and
Mitlin
,
D.
,
2013
, “
ALD TiO2 Coated Silicon Nanowires for Lithium Ion Battery Anodes With Enhanced Cycling Stability and Coulombic Efficiency
,”
Phys. Chem. Chem. Phys.
,
15
(
32
), pp.
13646
13657
.
15.
Han
,
X.
,
Liu
,
Y.
,
Jia
,
Z.
,
Chen
,
Y.
,
Wan
,
J.
,
Weadock
,
N.
,
Gaskell
,
K. J.
,
Li
,
T.
, and
Hu
,
L.
,
2014
, “
Atomic-Layer-Deposition Oxide Nanoglue for Sodium Ion Batteries
,”
Nano Lett.
,
14
(
1
), pp.
139
147
.
16.
Ahmed
,
B.
,
Shahid
,
M.
,
Nagaraju
,
D. H.
,
Anjum
,
D. H.
,
Hedhili
,
M. N.
, and
Alshareef
,
H. N.
,
2015
, “
Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes
,”
ACS Appl. Mater. Interfaces
,
7
(
24
), pp.
13154
13163
.
17.
Yesibolati
,
N.
,
Shahid
,
M.
,
Chen
,
W.
,
Hedhili
,
M. N.
,
Reuter
,
M. C.
,
Ross
,
F. M.
, and
Alshareef
,
H. N.
,
2014
, “
SnO2 Anode Surface Passivation by Atomic Layer Deposited HfO2 Improves Li-Ion Battery Performance
,”
Small
,
10
(
14
), pp.
2849
2858
.
18.
Luan
,
X.
,
Guan
,
D.
, and
Wang
,
Y.
,
2012
, “
Enhancing High-Rate and Elevated-Temperature Performances of Nano-Sized and Micron-Sized LiMn2O4 in Lithium-Ion Batteries With Ultrathin Surface Coatings
,”
J. Nanosci. Nanotech.
,
12
(
9
), pp.
7113
7120
.
19.
Abendroth
,
B.
,
Moebus
,
T.
,
Rentrop
,
S.
,
Strohmeyer
,
R.
,
Vinnichenko
,
M.
,
Weling
,
T.
,
Stöcker
,
H.
, and
Meyer
,
D. C.
,
2013
, “
Atomic Layer Deposition of TiO2 From Tetrakis(Dimethylamino) Titanium and H2O
,”
Thin Solid Films
,
545
, pp.
176
182
.
20.
Katamreddy
,
R.
,
Omarjee
,
V.
,
Feist
,
B.
, and
Dussarrat
,
C.
,
2008
, “
Ti Source Precursors for Atomic Layer Deposition of TiO2, STO and BST
,”
ECS Transactions
,
16
(
4
), pp.
113
122
.
21.
Tao
,
Q.
,
Kueltzo
,
A.
,
Singh
,
M.
,
Jursich
,
G.
, and
Takoudisa
,
C. G.
,
2011
, “
Atomic Layer Deposition of HfO2, TiO2, and HfxTi1−xO2 Using Metal (Diethylamino) Precursors and H2O
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
G27
G33
.
22.
Jung
,
Y. S.
,
Cavanagh
,
A. S.
,
Riley
,
L. A.
,
Kang
,
S. H.
,
Dillon
,
A. C.
,
Groner
,
M. D.
,
George
,
S. M.
, and
Lee
,
S. H.
,
2010
, “
Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries
,”
Adv. Mater.
,
22
(
19
), pp.
2172
2176
.
23.
Orsini
,
F.
,
Dollé
,
M.
, and
Tarascon
,
J.-M.
,
2000
, “
Impedance Study of the Li/Electrolyte Interface Upon Cycling
,”
Solid State Ionics
,
135
(
1–4
), pp.
213
221
.
24.
Thevenin
,
J. G.
, and
Muller
,
R. H.
,
1987
, “
Impedance of Lithium Electrodes in a Propylene Carbonate Electrolyte
,”
J. Electrochem. Soc.
,
134
(
2
), pp.
273
280
.
25.
Peled
,
E.
,
Golodnitsky
,
D.
,
Ardel
,
G.
, and
Eshkenazy
,
V.
,
1995
, “
The SEI Model-Application to Lithium-Polymer Electrolyte Batteries
,”
Electrochim. Acta
,
40
(
13–14
), pp.
2197
2204
.
You do not currently have access to this content.