The development of highly active and low-cost catalysts is a challenge for the application and large-scale commercialization of proton exchange membrane fuel cell (PEMFC). In this study, a series of Pt–Ni alloy catalysts is synthesized by potentiostatic electrodeposition, and the optimum deposition parameters are determined by an orthogonal array experiment. The effect of electrodeposition parameters on the morphology, composition, and electrocatalytic activity for oxygen reduction reaction (ORR) is investigated. The Pt–Ni alloy catalyst prepared with the optimum deposition parameters of −0.35 V versus saturated calomel electrode (SCE), 50 °C for 20 min exhibits the higher ORR activity. Rapid potential cycling dealloying is also employed to modify the morphology of Pt–Ni catalysts, which results in the increase of the electrochemical surface area (ECSA) and the improvement of the ORR electrocatalytic activity. The electrochemical active surface area (ECSA) for the dealloying Pt–Ni catalyst (D-OP-sample) with the grain size of 6.2 nm is 87.0 m2 g−1. The current density and the mass activity for the electrode with D-OP-sample catalyst are 281.5 mA·cm−2 at 0.4 V and 587.9 mA· mgPt1 at 0.6 V, respectively.

References

References
1.
Debe
,
M. K.
,
2012
, “
Electrocatalyst Approaches and Challenges for Automotive Fuel Cells
,”
Nature
,
486
(
7401
), pp.
43
51
.
2.
Zhang
,
H.
, and
Shen
,
P. K.
,
2012
, “
Recent Development of Polymer Electrolyte Membranes for Fuel Cells
,”
Chem. Rev.
,
112
(
5
), pp.
2780
2832
.
3.
Gasteiger
,
H. A.
,
Kocha
,
S. S.
,
Sompalli
,
B.
, and
Wagner
,
F. T.
,
2005
, “
Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs
,”
Appl. Catal. B: Environ.
,
56
(
1
), pp.
9
35
.
4.
Chen
,
C.
,
Kang
,
Y.
,
Huo
,
Z.
,
Zhu
,
Z.
,
Huang
,
W.
,
Xin
,
H. L.
,
Snyder
,
J. D.
,
Li
,
D.
,
Herron
,
J. A.
,
Mavrikakis
,
M.
,
Chi
,
M.
,
More
,
K. L.
,
Li
,
Y.
,
Markovic
,
N. M.
,
Somorjai
,
G. A.
,
Yang
,
P.
, and
Stamenkovic
,
V. R.
,
2014
, “
Highly Crystalline Multimetallic Nanoframes With Three-Dimensional Electrocatalytic Surfaces
,”
Science
,
343
(
6177
), pp.
1339
1343
.
5.
Jennings
,
P. C.
,
Pollet
,
B. G.
, and
Johnston
,
R. L.
,
2012
, “
Electronic Properties of Pt–Ti Nanoalloys and the Effect on Reactivity for Use in PEMFCs
,”
J. Phys. Chem. C
,
116
(
29
), pp.
15241
15250
.
6.
Saejeng
,
Y.
, and
Tantavichet
,
N.
,
2008
, “
Preparation of Pt–Co Alloy Catalysts by Electrodeposition for Oxygen Reduction in PEMFC
,”
J. Appl. Electrochem.
,
39
(
1
), pp.
123
134
.
7.
Wei
,
Z. D.
,
Feng
,
Y. C.
,
Li
,
L.
,
Liao
,
M. J.
,
Fu
,
Y.
,
Sun
,
C. X.
,
Shao
,
Z. G.
, and
Shen
,
P. K.
,
2008
, “
Electrochemically Synthesized Cu/Pt Core-Shell Catalysts on a Porous Carbon Electrode for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
180
(
1
), pp.
84
91
.
8.
Yang
,
D.-S.
,
Kim
,
M.-S.
,
Song
,
M. Y.
, and
Yu
,
J.-S.
,
2012
, “
Highly Efficient Supported PtFe Cathode Electrocatalysts Prepared by Homogeneous Deposition for Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
18
), pp.
13681
13688
.
9.
Zheng
,
J.
,
Fu
,
R.
,
Tian
,
T.
,
Wang
,
X.
, and
Ma
,
J.
,
2012
, “
Effect of the Microwave Thermal Treatment Condition on Pt–Fe/C Alloy Catalyst Performance
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
12994
13000
.
10.
Mustain
,
W. E.
,
Kim
,
H.
,
Osborn
,
T.
, and
Kohl
,
P. A.
,
2008
, “
Deposition of PtxRu1−x Catalysts for Methanol Oxidation in Micro Direct Methanol Fuel Cells
,”
Isr. J. Chem.
,
48
(
3–4
), pp.
251
257
.
11.
Escaño
,
M. C. S.
, and
Kasai
,
H.
,
2014
, “
First-Principles Study on Surface Structure, Thickness and Composition Dependence of the Stability of Pt-skin/Pt3Co Oxygen-Reduction-Reaction Catalysts
,”
J. Power Sources
,
247
, pp.
562
571
.
12.
Ge
,
X.
,
Chen
,
L.
,
Kang
,
J.
,
Fujita
,
T.
,
Hirata
,
A.
,
Zhang
,
W.
,
Jiang
,
J.
, and
Chen
,
M.
,
2013
, “
A Core-Shell Nanoporous Pt-Cu Catalyst With Tunable Composition and High Catalytic Activity
,”
Adv. Funct. Mater.
,
23
(
33
), pp.
4156
4162
.
13.
Stassi
,
A.
,
Gatto
,
I.
,
Monforte
,
G.
,
Baglio
,
V.
,
Passalacqua
,
E.
,
Antonucci
,
V.
, and
Aricò
,
A. S.
,
2012
, “
The Effect of Thermal Treatment on Structure and Surface Composition of PtCo Electro-Catalysts for Application in PEMFCs Operating Under Automotive Conditions
,”
J. Power Sources
,
208
, pp.
35
45
.
14.
Watanabe
,
M.
,
Tryk
,
D. A.
,
Wakisaka
,
M.
,
Yano
,
H.
, and
Uchida
,
H.
,
2012
, “
Overview of Recent Developments in Oxygen Reduction Electrocatalysis
,”
Electrochim. Acta
,
84
, pp.
187
201
.
15.
Hasché
,
F. D. R.
,
Oezaslan
,
M.
, and
Strasser
,
P.
,
2012
, “
Activity, Structure and Degradation of Dealloyed PtNi3 Nanoparticle Electrocatalyst for the Oxygen Reduction Reaction in PEMFC
,”
J. Electrochem. Soc.
,
159
(
1
), pp.
B25
B34
.
16.
Mani
,
P.
,
Srivastava
,
R.
, and
Strasser
,
P.
,
2011
, “
Dealloyed Binary PtM3 (M = Cu, Co, Ni) and Ternary PtNi3M (M=Cu, Co, Fe, Cr) Electrocatalysts for the Oxygen Reduction Reaction: Performance in Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
196
(
2
), pp.
666
673
.
17.
Oezaslan
,
M.
,
Heggen
,
M.
, and
Strasser
,
P.
,
2012
, “
Size-Dependent Morphology of Dealloyed Bimetallic Catalysts: Linking the Nano to the Macro Scale
,”
J. Electrochem. Soc.
,
134
(
1
), pp.
514
524
.
18.
Wang
,
W.
,
Ji
,
S.
,
Wang
,
H.
, and
Wang
,
R.
,
2012
, “
Nanoporous PdNi/C Electrocatalyst Prepared by Dealloying High-Ni-Content PdNi Alloy for Formic Acid Oxidation
,”
Fuel Cells
,
12
(
6
), pp.
1129
1133
.
19.
Jalan
,
V.
, and
Taylor
,
E. J.
,
1983
, “
Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid
,”
J. Electrochem. Soc.
,
130
(
11
), pp.
2329
2332
.
20.
Stamenkovic
,
V. R.
,
Fowler
,
B.
,
Mun
,
B. S.
,
Wang
,
G.
,
Ross
,
P. N.
,
Lucas
,
C. A.
, and
Markovic
,
N. M.
,
2007
, “
Improved Oxygen Reduction Activity on Pt3Ni(111) Via Increased Surface Site Availability
,”
Science
,
315
(
5811
), pp.
493
497
.
21.
Watanabe
,
M.
,
Tsurumi
,
K.
, and
Mizukami
,
T.
,
1994
, “
Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells
,”
J. Electrochem. Soc.
,
141
(
10
), pp.
2659
2668
.
22.
Liu
,
L.
,
Pippel
,
E.
,
Scholz
,
R.
, and
Gösele
,
U.
,
2009
, “
Nanoporous Pt−Co Alloy Nanowires: Fabrication, Characterization, and Electrocatalytic Properties
,”
Nano Lett.
,
9
(
12
), pp.
4352
4358
.
23.
Liu
,
L.
,
Huang
,
Z.
,
Wang
,
D.
,
Scholz
,
R.
, and
Pippel
,
E.
,
2011
, “
The Fabrication of Nanoporous Pt-Based Multimetallic Alloy Nanowires and Their Improved Electrochemical Durability
,”
Nanotechnology
,
22
(
10
), p.
105604
.
24.
Liu
,
L.
, and
Pippel
,
E.
,
2011
, “
Low-Platinum-Content Quaternary PtCuCoNi Nanotubes With Markedly Enhanced Oxygen Reduction Activity
,”
Angew. Chem. Int. Ed.
,
123
(
12
), pp.
2781
2785
.
25.
Lee
,
E.
,
Jang
,
J. H.
,
Matin
,
M. A.
, and
Kwon
,
Y. U.
,
2014
, “
One-Step Sonochemical Syntheses of Ni@Pt Core-Shell Nanoparticles With Controlled Shape and Shell Thickness for Fuel Cell Electrocatalyst
,”
Ultrason. Sonochem.
,
21
(
1
), pp.
317
323
.
26.
Liu
,
L.
,
Scholz
,
R.
,
Pippel
,
E.
, and
Gösele
,
U.
,
2010
, “
Microstructure, Electrocatalytic and Sensing Properties of Nanoporous Pt46Ni54 Alloy Nanowires Fabricated by Mild Dealloying
,”
J. Mater. Chem.
,
20
(
27
), pp.
5621
5627
.
27.
Shui
,
J.-L.
,
Zhang
,
J.-W.
, and
Li
,
J. C. M.
,
2011
, “
Making Pt-Shell Pt30Ni70 Nanowires by Mild Dealloying and Heat Treatments With Little Ni Loss
,”
J. Mater. Chem.
,
21
(
17
), pp.
6225
6229
.
28.
Zhao
,
W.
,
Yang
,
Y.
, and
Zhang
,
H.
,
2013
, “
Electrodeposition Preparation of Highly Dispersed Pt/HxWO3 Composite Catalysts for PEMFCs
,”
Electrochim. Acta
,
99
, pp.
273
277
.
29.
Nores-Pondal
,
F. J.
,
Vilella
,
I. M. J.
,
Troiani
,
H.
,
Granada
,
M.
,
de Miguel
,
S. R.
,
Scelza
,
O. A.
, and
Corti
,
H. R.
,
2009
, “
Catalytic Activity vs. Size Correlation in Platinum Catalysts of PEM Fuel Cells Prepared on Carbon Black by Different Methods
,”
Int. J. Hydrogen Energy
,
34
(
19
), pp.
8193
8203
.
30.
Wen-Wen
,
Z.
,
Hua
,
Z.
, and
Mei
,
L.
,
2013
, “
Potentiostatic Electrodeposition of Pt-Fe Alloy Catalyst and Application in PEMFC Cathode
,”
J. Inorg. Mater.
,
28
(
11
), pp.
1217
1222
.
31.
Sakthivel
,
M.
,
Radev
,
I.
,
Peinecke
,
V.
, and
Drillet
,
J. F.
,
2015
, “
Highly Active and Stable Pt3Cr/C Alloy Catalyst in H2-PEMFC
,”
J. Electrochem. Soc.
,
162
(
8
), pp.
F901
F906
.
You do not currently have access to this content.