By modifying the carbon electrode with a yeast extract (YE) using a support material (SM), a complete bio-anode was established without adding any extrinsic enzymes and mediators in a glucose–air fuel cell. The yeast extract was mixed into a paste with carbon black and an SM, i.e., glutaraldehyde (GA), TritonX-100, polyethyleneglycol, chitosan, or agarose. Chitosan was the best support, producing lower overpotentials and a good stability. Optimization of the paste composition and its loading were carried out for the bio-anode of a glucose–air fuel cell. The fuel cell generated a power of 33 μW cm−2 at 333 K with an aqueous glucose solution without adding any extrinsic enzymes and mediators. It showed about 70% of the initial power output at a stable condition. The bio-anode is expected to be used for energy recovery from hot wastewater-containing glucose.

References

References
1.
Logan
,
B. E.
,
Hamelers
,
B.
,
Rozendal
,
R.
,
Shroder
,
U.
,
Keller
,
J.
,
Freguia
,
S.
,
Aelterman
,
P.
,
Verstraete
,
W.
, and
Rabaey
,
K.
,
2006
, “
Microbial Fuel Cells: Methodology and Technology
,”
Environ. Sci. Technol.
,
40
(
17
), pp.
5181
5192
.
2.
Arechederra
,
R. L.
, and
Mintter
,
S. D.
,
2008
, “
Organelle-Based Biofuel Cells: Immobilized Mitochondria on Carbon Paper Electrodes
,”
Electrochim. Acta
,
53
(
23
), pp.
6698
6703
.
3.
Arechederra
,
R. L.
,
Boehm
,
K.
, and
Minteer
,
S. D.
,
2009
, “
Mitochondria Bioelectrocatalysis for Biofuel Cell Applications
,”
Electrochim. Acta
,
54
(
28
), pp.
7268
7273
.
4.
Osman
,
M. H.
,
Shah
,
A. A.
, and
Walsh
,
F. C.
,
2011
, “
Recent Progress and Continuing Challenges in Bio-Fuel Cells—Part I: Enzymatic Cells
,”
Biosens. Bioelectron.
,
26
(
7
), pp.
3087
3102
.
5.
Leech
,
D.
,
Kavanagh
,
P.
, and
Schuhmann
,
W.
,
2012
, “
Enzymatic Fuel Cells: Recent Progress
,”
Electrochim. Acta
,
84
(
1
), pp.
223
234
.
6.
Reguera
,
G.
,
Nevin
,
K. P.
, and
Nicoll
,
J. S.
,
2006
, “
Biofilm and Nanowire Production Leads to Increased Current in Geobacter Sulfurreducens Fuel Cells
,”
Appl. Environ. Microbiol.
,
72
(
11
), pp.
7345
7348
.
7.
Zhao
,
Y.
,
Watanabe
,
K.
, and
Nakamura
,
R.
,
2010
, “
Three-Dimensional Conductive Nanowire Networks for Maximizing Anode Performance in Microbial Fuel Cells
,”
Chem. Europ. J.
,
16
(
17
), pp.
4982
4985
.
8.
Sayed
,
E. T.
,
Saito
,
Y.
,
Tsujiguchi
,
T.
, and
Nakagawa
,
N.
,
2012
, “
Calytic Activity of Yeast Extract in Biofuel Cell
,”
J. Biosci. Bioeng.
,
144
(
5
), pp.
521
525
.
9.
Kamitaka
,
Y.
,
Tsujimura
,
S.
,
Setoyama
,
N.
,
Kajino
,
T.
, and
Kano
,
K.
,
2007
, “
Fructose/Dioxygen Biofuel Cell Based on Direct Electron Transfer-Type Bioelectrocatalysis
,”
Phys. Chem. Chem. Phys.
,
9
(
15
), pp.
1793
1801
.
10.
Yamazaki
,
T.
,
Tsugawa
,
W.
, and
Sode
,
K.
,
1999
, “
Subunit Analyses of a Novel Thermostable Glucose Dehydrogenase Showing Different Temperature Properties According to Its Quaternary Structure
,”
Appl. Biochem. Biotechnol.
,
77–79
(
1
), pp.
325
335
.
11.
Datta
,
S.
,
Christena
,
L. R.
, and
Rajaram
,
Y. R. S.
,
2013
, “
Enzyme Immobilization: An Overview on Techniques and Support Materials
,”
Biotechnology
,
3
(
1
), pp.
1
9
.
12.
Pizzariello
,
A.
,
Stred'ansky
,
M.
, and
Miertuš
,
S.
,
2002
, “
A Glucose/Hydrogen Peroxide Biofuel Cell That Uses Oxidase and Peroxidase as Catalysts by Composite Bulk-Modified Bioelectrodes Based on a Solid Binding Matrix
,”
Bioelectrochemistry
,
56
(
1–2
), pp.
99
105
.
13.
Tasca
,
F.
,
Gorton
,
L.
,
Harreither
,
W.
,
Haltrich
,
D.
,
Ludwig
,
R.
, and
Nöll
,
G.
,
2008
, “
Direct Electron Transfer at Cellobiose Dehydrogenase Modified Anodes for Biofuel Cell
,”
J. Phys. Chem. C
,
112
(
26
), pp.
9956
9961
.
14.
Ikeda
,
T.
,
Hamada
,
H.
, and
Senda
,
M.
,
1986
, “
Electrocatalytic Oxidation of Glucose at a Glucose Oxidase-Immobilized Benzoquinone-Mixed Carbon Paste Electrode
,”
Agric. Biol. Chem.
,
50
(
4
), pp.
883
890
.
15.
Gregg
,
B. A.
, and
Heller
,
A.
,
1991
, “
Redox Polymer Films Containing Enzymes—1: A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone
,”
J. Phys. Chem.
,
95
(
15
), pp.
5970
5975
.
16.
Kandimalla
, V
. B.
,
Tripathi
, V
. S.
, and
Ju
,
H. X.
,
2006
, “
Immobilization of Biomolecules in Sol–Gels: Biological and Analytical Applications
,”
Crit. Rev. Anal. Chem.
,
36
(
2
), pp.
73
106
.
You do not currently have access to this content.