A distributed charge transfer (DCT) model has been developed to analyze solid oxide fuel cells (SOFCs) and electrolyzers operating in H2–H2O and CO–CO2 atmospheres. The model couples mass transport based on the dusty-gas model (DGM), ion and electron transport in terms of charged species electrochemical potentials, and electrochemical reactions defined by Butler–Volmer kinetics. The model is validated by comparison to published experimental data, particularly cell polarization curves for both fuel cell and electrolyzer operation. Parametric studies have been performed to compare the effects of microstructure on the performance of SOFCs and solid oxide electrolysis cells (SOECs) operating in H2–H2O and CO–CO2 gas streams. Compared to the H2–H2O system, the power density of the CO–CO2 system shows a greater sensitivity to pore microstructure, characterized by the porosity and tortuosity. Analysis of the pore diameter concurs with the porosity and tortuosity parametric studies that CO–CO2 systems are more sensitive to microstructural changes than H2–H2O systems. However, the concentration losses of the CO–CO2 system are significantly higher than those of the H2–H2O system for the pore sizes analyzed. While both systems can be shown to improve in performance with higher porosity, lower tortuosity, and larger pore sizes, the results of these parametric studies imply that CO–CO2 systems would benefit more from such microstructural changes. These results further suggest that objectives for tailoring microstructure in solid oxide cells (SOCs) operating in CO–CO2 are distinct from objectives for more common H2-focused systems.

References

References
1.
Perry Murray
,
E.
,
Tsai
,
T.
, and
Barnett
,
S. A.
,
1999
, “
A Direct-Method Fuel Cell With a Ceria-Based Anode
,”
Nature
,
400
, pp.
649
651
.
2.
Kim
,
G.
,
Corre
,
G.
,
Irvine
,
J. T. S.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2008
, “
Engineering Composite Oxide SOFC Anodes for Efficient Oxidation of Methane
,”
Electrochem. Solid-State Lett.
,
11
(
2
), pp.
B16
B19
.
3.
Sasaki
,
K.
,
Watanabe
,
K.
,
Shiosaki
,
K.
,
Susuki
,
K.
, and
Teraoka
,
Y.
,
2004
, “
Multi-Fuel Capability of Solid Oxide Fuel Cells
,”
J. Electroceram.
,
13
(
1
), pp.
669
675
.
4.
Herring
,
J. S.
,
O'Brien
,
J. E.
,
Stoots
,
C. M.
,
Hawkes
,
G. L.
,
Hartvigsen
,
J. J.
, and
Shahnam
,
M.
,
2007
, “
Progress in High-Temperature Electrolysis for Hydrogen Production Using Planar SOFC Technology
,”
Int. J. Hydrogen Energy
,
32
(
4
), pp.
440
450
.
5.
O'Brien
,
J. E.
,
McKellar
,
M. G.
,
Stoots
,
C. M.
,
Herring
,
J. S.
, and
Hawkes
,
G. L.
,
2009
, “
Parametric Study of Large-Scale Production of Syngas Via High-Temperature Co-Electrolysis
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
4216
4226
.
6.
Knibbe
,
R.
,
Traulsen
,
M. L.
,
Hauch
,
A.
,
Ebbesen
,
S. D.
, and
Mogensen
,
M.
,
2010
, “
Solid Oxide Electrolysis Cells: Degradation at High Current Densities
,”
J. Electrochem. Soc.
,
157
(
8
), pp.
B1209
B1217
.
7.
Hauch
,
A.
,
Ebbesen
,
S. D.
,
Jensen
,
S. H.
, and
Mogensen
,
M.
,
2008
, “
Solid Oxide Electrolysis Cells: Microstructure and Degradation of the Ni/Yttria-Stabilized Zirconia Electrode
,”
J. Electrochem. Soc.
,
155
(
11
), pp.
B1184
B1193
.
8.
Hino
,
R.
,
Haga
,
K.
,
Aita
,
H.
, and
Sekita
,
K.
,
2004
, “
R&D on Hydrogen Production by High-Temperature Electrolysis of Steam
,”
Nucl. Eng. Des.
,
233
(
1–3
), pp.
363
375
.
9.
Bidrawn
,
F.
,
Kim
,
G.
,
Corre
,
G.
,
Irvine
,
J. T. S.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2008
, “
Efficient Reduction of CO2 in a Solid Oxide Electrolyzer
,”
Electrochem. Solid-State Lett.
,
11
(
9
), pp.
B167
B170
.
10.
Ebbesen
,
S. D.
, and
Mogensen
,
M.
,
2009
, “
Electrolysis of Carbon Dioxide in Solid Oxide Electrolysis Cells
,”
J. Power Sources
,
193
(
1
), pp.
349
358
.
11.
Hartvigsen
,
J.
,
Elangovan
,
S.
,
Frost
,
L.
,
Nickens
,
A.
,
Stoots
,
C.
,
O'Brien
,
J.
, and
Herring
,
J. S.
,
2008
, “
Carbon Dioxide Recycling by High Temperature Co-Electrolysis and Hydrocarbon Synthesis
,”
ECS Trans.
,
12
(
1
), pp.
625
637
.
12.
Li
,
W.
,
Wang
,
H.
,
Shi
,
Y.
, and
Cai
,
N.
,
2013
, “
Performance and Methane Production Characteristics of H2O–CO2 Co-Electrolysis in Solid Oxide Electrolysis Cells
,”
Int. J. Hydrogen Energy
,
38
(
25
), pp.
11104
11109
.
13.
Ebbesen
,
S. D.
,
Høgh
,
J.
,
Nielsen
,
K. A.
,
Nielsen
,
J. U.
, and
Mogensen
,
M.
,
2011
, “
Durable SOC Stacks for Production of Hydrogen and Synthesis Gas by High Temperature Electrolysis
,”
Int. J. Hydrogen Energy
,
36
(
13
), pp.
7363
7373
.
14.
Zhan
,
Z.
, and
Zhao
,
L.
,
2010
, “
Electrochemical Reduction of CO2 in Solid Oxide Electrolysis Cells
,”
J. Power Sources
,
195
(
21
), pp.
7250
7254
.
15.
Laguna-Bercero
,
M. A.
,
2012
, “
Recent Advances in High Temperature Electrolysis Using Solid Oxide Fuel Cells: A Review
,”
J. Power Sources
,
203
, pp.
4
16
.
16.
Bidrawn
,
F.
,
Kim
,
G.
,
Corre
,
G.
,
Irvine
,
J. T. S.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2008
, “
Efficient Reduction of CO2 in a Solid Oxide Electrolyzer
,”
Electrochem. Solid-State Lett.
,
11
(
9
), pp.
B167
B170
.
17.
Tao
,
G.
,
Sridhar
,
K. R.
, and
Chan
,
C. L.
,
2004
, “
Study of Carbon Dioxide Electrolysis at Electrode/Electrolyte Interface—Part I: Pt/YSZ Interface
,”
Solid State Ionics
,
175
(
1–4
), pp.
615
619
.
18.
Ebbesen
,
S. D.
, and
Mogensen
,
M.
,
2009
, “
Electrolysis of Carbon Dioxide in Solid Oxide Electrolysis Cells
,”
J. Power Sources
,
193
(
1
), pp.
349
358
.
19.
Hartvigsen
,
J.
,
Elangovan
,
S.
,
Frost
,
L.
,
Nickens
,
A.
,
Stoots
,
C. M.
,
O'Brien
,
J. E.
, and
Herring
,
J. S.
,
2008
, “
Carbon Dioxide Recycling by High Temperature Co-Electrolysis and Hydrocarbon Synthesis
,”
ECS Trans.
,
12
(
1
), pp.
625
637
.
20.
Zhang
,
H.
,
Wang
,
J.
,
Su
,
S.
, and
Chen
,
J.
,
2013
, “
Electrochemical Performance Characteristics and Optimum Design Strategies of a Solid Oxide Electrolysis Cell System for Carbon Dioxide Reduction
,”
Int. J. Hydrogen Energy
,
38
(
23
), pp.
9609
9618
.
21.
Chiu
,
W. K. S.
,
Virkar
,
A. V.
,
Zhao
,
F.
,
Reifsnider
,
K. L.
,
Nelson
,
G. J.
,
Rabbi
,
F.
, and
Liu
,
Q.
,
2012
, “
HeteroFoaMs: Electrode Modeling in Nanostructured Heterogeneous Materials for Energy Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
1
), p.
011019
.
22.
Reifsnider
,
K. L.
,
Chiu
,
W. K.
,
Brinkman
,
K. S.
,
Du
,
Y.
,
Nakajo
,
A.
,
Rabbi
,
F.
, and
Liu
,
Q.
,
2013
, “
Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
F470
F481
.
23.
Nelson
,
G. J.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2011
, “
Analytical Investigations of Varying Cross Section Microstructures on Charge Transfer in Solid Oxide Fuel Cell Electrodes
,”
J. Power Sources
,
196
(
10
), pp.
4695
4704
.
24.
Nelson
,
G. J.
,
Nakajo
,
A.
,
Cassenti
,
B. N.
,
DeGostin
,
M. B.
,
Bagshaw
,
K. R.
,
Peracchio
,
A. A.
,
Xiao
,
G.
,
Wang
,
S.
,
Chen
,
F.
, and
Chiu
,
W. K. S.
,
2014
, “
A Rapid Analytical Assessment Tool for Three Dimensional Electrode Microstructural Networks With Geometric Sensitivity
,”
J. Power Sources
,
246
, pp.
322
334
.
25.
Grew
,
K. N.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2010
, “
Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure—Part 2: Quantitative Measurement of the Microstructure and Contributions to Transport Losses
,”
J. Power Sources
,
195
(
24
), pp.
7943
7958
.
26.
Grew
,
K. N.
,
Chu
,
Y. S.
,
Yi
,
J.
,
Peracchio
,
A. A.
,
Izzo
,
J. R.
,
Hwu
,
Y.
,
De Carlo
,
F.
, and
Chiu
,
W. K. S.
,
2010
, “
Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode
,”
J. Electrochem. Soc.
,
157
(
6
), pp.
B783
B792
.
27.
Geisler
,
H.
,
Kornely
,
M.
,
Weber
,
A.
, and
Ivers-Tiffée
,
E.
,
2013
, “
Enhancing SOFC-Stack Performance by Model-Based Adaptation of Cathode Gas Transport Conditions
,”
ECS Trans.
,
57
(
1
), pp.
2871
2881
.
28.
Kornely
,
M.
,
Leonide
,
A.
,
Weber
,
A.
, and
Ivers-Tiffée
,
E.
,
2011
, “
Performance Limiting Factors in Anode-Supported Cells Originating From Metallic Interconnector Design
,”
J. Power Sources
,
196
(
17
), pp.
7209
7216
.
29.
Campanari
,
S.
, and
Iora
,
P.
,
2005
, “
Comparison of Finite Volume SOFC Models for the Simulation of a Planar Cell Geometry
,”
Fuel Cells
,
5
(
1
), pp.
34
51
.
30.
Nelson
,
G. J.
, and
Haynes
,
C. L.
,
2008
, “
Continuum-Level Solid Oxide Electrode Constriction Resistance Effects
,”
J. Power Sources
,
185
(
2
), pp.
1168
1178
.
31.
Huang
,
K.
, and
Shull
,
J. L.
,
2011
, “
Geometry-Dependent Oxygen Diffusion Flux and Limiting Current Density of the Cathode in a Cathode-Supported Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
B84
B90
.
32.
Nelson
,
G. J.
,
Cassenti
,
B. N.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2012
, “
Two-Dimensional Charge Transfer and Space Charge Effects in Extended Surface Solid Oxide Fuel Cell Electrodes
,”
J. Power Sources
,
205
, pp.
48
56
.
33.
Reifsnider
,
K.
,
Huang
,
X.
,
Ju
,
G.
, and
Solasi
,
R.
,
2006
, “
Multi-Scale Modeling Approaches for Functional Nano-Composite Materials
,”
J. Mater. Sci.
,
41
(
20
), pp.
6751
6759
.
34.
Zhao
,
F.
, and
Virkar
,
A. V.
,
2010
, “
Effect of Morphology and Space Charge on Conduction Through Porous Doped Ceria
,”
J. Power Sources
,
195
(
19
), pp.
6268
6279
.
35.
Sofie
,
S. W.
,
2007
, “
Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze-Tape-Casting Process
,”
J. Am. Ceram. Soc.
,
90
(
7
), pp.
2024
2031
.
36.
Liu
,
Y.
,
Compson
,
C.
, and
Liu
,
M.
,
2004
, “
Nanostructured and Functionally Graded Cathodes for Intermediate Temperature Solid Oxide Fuel Cells
,”
J. Power Sources
,
138
(
1–2
), pp.
194
198
.
37.
Liu
,
Q.
,
Dong
,
X.
,
Yang
,
C.
,
Ma
,
S.
, and
Chen
,
F.
,
2010
, “
Self-Rising Synthesis of Ni-SDC Cermets as Anodes for Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
6
), pp.
1543
1550
.
38.
Dudek
,
M.
,
Tomov
,
R. I.
,
Wang
,
C.
,
Glowacki
,
B. A.
,
Tomczyk
,
P.
,
Socha
,
R. P.
, and
Mosialek
,
M.
,
2013
, “
Feasibility of Direct Carbon Solid Oxide Fuels Cell (DC-SOFC) Fabrication by Inkjet Printing Technology
,”
Electrochim. Acta
,
105
, pp.
412
418
.
39.
Faino
,
N.
,
Rosensteel
,
W.
,
Gorman
,
B.
, and
Sullivan
,
N.
,
2011
, “
Progress Toward Inkjet Deposition of Segmented-in-Series Solid-Oxide Fuel Cell Architectures
,”
ECS Trans.
,
35
(
1
), pp.
593
600
.
40.
Kuhn
,
M.
,
Napporn
,
T.
,
Meunier
,
M.
,
Vengallatore
,
S.
, and
Therriault
,
D.
,
2008
, “
Direct-Write Microfabrication of Single-Chamber Micro Solid Oxide Fuel Cells
,”
J. Micromechan. Microeng.
,
18
(
1
), p.
015005
.
41.
Li
,
C.
,
Shi
,
H.
,
Ran
,
R.
,
Su
,
C.
, and
Shao
,
Z.
,
2013
, “
Thermal Inkjet Printing of Thin-Film Electrolytes and Buffering Layers for Solid Oxide Fuel Cells With Improved Performance
,”
Int. J. Hydrogen Energy
,
38
(
22
), pp.
9310
9319
.
42.
Kim
,
Y.-B.
,
Ahn
,
S.-J.
,
Moon
,
J.
,
Kim
,
J.
, and
Lee
,
H.-W.
,
2006
, “
Direct-Write Fabrication of Integrated Planar Solid Oxide Fuel Cells
,”
J. Electroceram.
,
17
(
2
), pp.
683
687
.
43.
Nelson
,
G. J.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2011
, “
Analytical Investigations of Varying Cross Section Microstructures on Charge Transfer in Solid Oxide Fuel Cell Electrodes
,”
J. Power Sources
,
196
(
10
), pp.
4695
4704
.
44.
Nelson
,
G. J.
,
Nakajo
,
A.
,
Cassenti
,
B. N.
,
DeGostin
,
M. B.
,
Bagshaw
,
K. R.
,
Peracchio
,
A. A.
,
Xiao
,
G.
,
Wang
,
S.
,
Chen
,
F.
, and
Chiu
,
W. K. S.
,
2014
, “
A Rapid Analytical Assessment Tool for Three Dimensional Electrode Microstructural Networks With Geometric Sensitivity
,”
J. Power Sources
,
246
, pp.
322
334
.
45.
Zhu
,
H.
, and
Kee
,
R. J.
,
2008
, “
Modeling Distributed Charge-Transfer Processes in SOFC Membrane Electrode Assemblies
,”
J. Electrochem. Soc.
,
155
(
7
), pp.
B715
B729
.
46.
Bertei
,
A.
,
Nucci
,
B.
, and
Nicolella
,
C.
,
2013
, “
Microstructural Modeling for Prediction of Transport Properties and Electrochemical Performance in SOFC Composite Electrodes
,”
Chem. Eng. Sci.
,
101
, pp.
175
190
.
47.
Lynch
,
M. E.
,
Ding
,
D.
,
Harris
,
W. M.
,
Lombardo
,
J. J.
,
Nelson
,
G. J.
,
Chiu
,
W. K. S.
, and
Liu
,
M.
,
2013
, “
Flexible Multiphysics Simulation of Porous Electrodes: Conformal to 3D Reconstructed Microstructures
,”
Nano Energy
,
2
(
1
), pp.
105
115
.
48.
Dumortier
,
M.
,
Sanchez
,
J.
,
Keddam
,
M.
, and
Lacroix
,
O.
,
2014
, “
Analytical Calculation of Transfers Across a Cermet for Solid Oxide Fuel Cells and Electrolyzers
,”
J. Power Sources
,
248
, pp.
703
713
.
49.
Chan.
,
S.
,
Khor
,
K.
, and
Xia
,
Z.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
(
1–2
), pp.
130
140
.
50.
Chen
,
H.-Y.
,
Yu
,
H.-C.
,
Scott Cronin
,
J.
,
Wilson
,
J. R.
,
Barnett
,
S. A.
, and
Thornton
,
K.
,
2011
, “
Simulation of Coarsening in Three-Phase Solid Oxide Fuel Cell Anodes
,”
J. Power Sources
,
196
(
3
), pp.
1333
1337
.
51.
Simwonis
,
D.
,
Tietz
,
F.
, and
Stöver
,
D.
,
2000
, “
Nickel Coarsening in Annealed Ni/8YSZ Anode Substrates for Solid Oxide Fuel Cells
,”
Solid State Ionics
,
132
(
3–4
), pp.
241
251
.
52.
Yan
,
M.
,
Zeng
,
M.
,
Chen
,
Q.
, and
Wang
,
Q.
,
2012
, “
Numerical Study on Carbon Deposition of SOFC With Unsteady State Variation of Porosity
,”
Appl. Energy
,
97
, pp.
754
762
.
53.
Abdeljawad
,
F.
,
Völker
,
B.
,
Davis
,
R.
,
McMeeking
,
R. M.
, and
Haataja
,
M.
,
2014
, “
Connecting Microstructural Coarsening Processes to Electrochemical Performance in Solid Oxide Fuel Cells: An Integrated Modeling Approach
,”
J. Power Sources
,
250
, pp.
319
331
.
54.
Bessler
,
W.
,
Warnatz
,
J.
, and
Goodwin
,
D.
,
2007
, “
The Influence of Equilibrium Potential on the Hydrogen Oxidation Kinetics of SOFC Anodes
,”
Solid State Ionics
,
177
(
39–40
), pp.
3371
3383
.
55.
Suwanwarangkul
,
R.
,
Croiset
,
E.
,
Fowler
,
M. W.
,
Douglas
,
P. L.
,
Entchev
,
E.
, and
Douglas
,
M. A.
,
2003
, “
Performance Comparison of Fick's, Dusty-Gas and Stefan–Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode
,”
J. Power Sources
,
122
(
1
), pp.
9
18
.
56.
Cannarozzo
,
M.
,
Grosso
,
S.
,
Agnew
,
G.
,
Del Borghi
,
A.
, and
Costamagna
,
P.
,
2007
, “
Effects of Mass Transport on the Performance of Solid Oxide Fuel Cells Composite Electrodes
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
1
), pp.
99
106
.
57.
Shikazono
,
N.
,
Kanno
,
D.
,
Matsuzaki
,
K.
,
Teshima
,
H.
,
Sumino
,
S.
, and
Kasagi
,
N.
,
2010
, “
Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed From FIB-SEM Images
,”
J. Electrochem. Soc.
,
157
(
5
), pp.
B665
B672
.
58.
Matsuzaki
,
K.
,
Shikazono
,
N.
, and
Kasagi
,
N.
,
2011
, “
Three-Dimensional Numerical Analysis of Mixed Ionic and Electronic Conducting Cathode Reconstructed by Focused Ion Beam Scanning Electron Microscope
,”
J. Power Sources
,
196
(
6
), pp.
3073
3082
.
59.
Mason
,
E. A.
, and
Malinauskas
,
A. P.
,
1983
,
Gas Transport in Porous Media: The Dusty-Gas Model
,
Elsevier
,
Amsterdam, The Netherlands
.
60.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishinuma
,
M.
, and
Yasuda
,
I.
,
2001
, “
3-D Model Calculation for Planar SOFC
,”
J. Power Sources
,
102
(
1–2
), pp.
144
154
.
61.
Izzo
,
J. R.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2008
, “
Modeling of Gas Transport Through a Tubular Solid Oxide Fuel Cell and the Porous Anode Layer
,”
J. Power Sources
,
176
(
1
), pp.
200
206
.
62.
Andersson
,
M.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2013
, “
SOFC Modeling Considering Hydrogen and Carbon Monoxide as Electrochemical Reactants
,”
J. Power Sources
,
232
, pp.
42
54
.
63.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Sherwood
,
T. K.
,
1977
,
The Properties of Gases and Liquids
,
3rd ed.
,
McGraw-Hill
,
New York
.
64.
Epstein
,
N.
,
1989
, “
On Tortuosity and the Tortuosity Factor in Flow and Diffusion Through Porous Media
,”
Chem. Eng. Sci.
,
44
(
3
), pp.
777
779
.
65.
Grew
,
K. N.
,
Peracchio
,
A. A.
,
Joshi
,
A. S.
,
Izzo
,
J. R.
, Jr.
, and
Chiu
,
W. K. S.
,
2010
, “
Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure—Part 1: Volumetric Measurements of the Heterogeneous Structure
,”
J. Power Sources
,
195
(
24
), pp.
7930
7942
.
66.
Grew
,
K. N.
,
Chu
,
Y. S.
,
Yi
,
J.
,
Peracchio
,
A. A.
,
Izzo
,
J. R.
,
Hwu
,
Y.
,
De Carlo
,
F.
, and
Chiu
,
W. K. S.
,
2010
, “
Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode
,”
J. Electrochem. Soc.
,
157
(
6
), pp.
B783
B792
.
67.
Wilson
,
J. R.
,
Kobsiriphat
,
W.
,
Mendoza
,
R.
,
Chen
,
H.-Y.
,
Hiller
,
J. M.
,
Miller
,
D. J.
,
Thornton
,
K.
,
Voorhees
,
P. W.
,
Adler
,
S. B.
, and
S. A.
Barnett
,
2006
, “
Three-Dimensional Reconstruction of a Solid-Oxide Fuel-Cell Anode
,”
Nat. Mater.
,
5
(
7
), pp.
541
544
.
68.
Nelson
,
G. J.
,
Grew
,
K. N.
,
Izzo
,
J. R.
,
Lombardo
,
J. J.
,
Harris
,
W. M.
,
Faes
,
A.
,
Hessler-Wyserd
,
A.
,
Van herlee
,
J.
,
Wang
,
S.
,
Chug
,
Y. S.
,
Virkara
,
A. V.
, and
Chiu
,
W. K. S.
,
2012
, “
Three-Dimensional Microstructural Changes in the Ni–YSZ Solid Oxide Fuel Cell Anode During Operation
,”
Acta Mater.
,
60
(
8
), pp.
3491
3500
.
69.
Nelson
,
G. J.
,
Harris
,
W. M.
,
Lombardo
,
J. J.
,
Izzo
,
J. R.
,
Chiu
,
W. K. S.
,
Tanasini
,
P.
,
Cantoni
,
M.
,
Van herle
,
J.
,
Comninellis
,
C.
,
Andrews
,
J. C.
,
Liu
,
Y.
,
Pianetta
,
P.
, and
Chu
,
Y. S.
,
2011
, “
Comparison of SOFC Cathode Microstructure Quantified Using X-Ray Nanotomography and Focused Ion Beam-Scanning Electron Microscopy
,”
Electrochem. Commun.
,
13
(
6
), pp.
586
589
.
70.
Fleig
,
J.
,
2002
, “
On the Width of the Electrochemically Active Region in Mixed Conducting Solid Oxide Fuel Cell Cathodes
,”
J. Power Sources
,
105
(
2
), pp.
228
238
.
71.
Williford
,
R. E.
, and
Chick
,
L. A.
,
2003
, “
Surface Diffusion and Concentration Polarization on Oxide-Supported Metal Electrocatalyst Particles
,”
Surf. Sci.
,
547
(
3
), pp.
421
437
.
72.
Fehribach
,
J. D.
, and
O'Hayre
,
R.
,
2009
, “
Triple Phase Boundaries in Solid-Oxide Cathodes
,”
SIAM J. Appl. Math.
,
70
(
2
), pp.
510
530
.
73.
Trimm
,
D. L.
,
1999
, “
Catalysts for the Control of Coking During Steam Reforming
,”
Catal. Today.
,
49
(
1–3
), pp.
3
10
.
74.
Costamagna
,
P.
,
Costa
,
P.
, and
Antonucci
,
V.
,
1998
, “
Micro-Modelling of Solid Oxide Fuel Cell Electrodes
,”
Electrochim. Acta
,
43
(
3–4
), pp.
375
394
.
75.
Sunde
,
S.
,
1996
, “
Monte Carlo Simulations of Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1930
1939
.
76.
Cussler
,
E. L.
,
2009
,
Diffusion: Mass Transfer in Fluid Systems
,
3rd ed.
,
Cambridge University Press
,
Cambridge, MA
.
77.
Haberman
,
B. A.
, and
Young
,
J. B.
,
2004
, “
Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated-Planar Solid Oxide Fuel Cell
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3617
3629
.
78.
Ni
,
M.
,
2012
, “
An Electrochemical Model for Syngas Production by Co-Electrolysis of H2O and CO2
,”
J. Power Sources
,
202
, pp.
209
216
.
You do not currently have access to this content.