A new kind of sandwiched composite membrane (SCM) for lithium-ion batteries is prepared by depositing zirconia microparticle between two layers of electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofibers by electrostatic spray deposition. The thermal shrinkage, electrochemical properties of the separator, and cycle performance for batteries with the SCM were investigated. The results show that the SCM has a high electrolyte uptake and easily absorbs electrolyte to form gelled polymer electrolytes (GPEs). The SCM GPEs have a high ionic conductivity of up to 2.06 × 10−3 S cm−1 at room temperature and show a high electrochemical stability potential of 5.4 V. With LiCoCO2 as cathode, the cell with SCM GPEs exhibits a high initial discharge capacity of 149.7 mAh g−1.

References

References
1.
Nunes-Pereira
,
J.
,
Lopes
,
A. C.
,
Costa
,
C. M.
,
Rodrigues
,
L. C.
,
Silva
,
M. M.
, and
Lanceros-Méndez
,
S.
,
2013
, “
Microporous Membranes of NaY Zeolite/Poly(Vinylidene Fluoride–Trifluoroethylene) for Li-Ion Battery Separators
,”
J. Electroanal. Chem.
,
689
(15), pp.
223
232
.
2.
Ulaganathan
,
M.
,
Mathew
,
C. M.
, and
Rajendran
,
S.
,
2013
, “
Highly Porous Lithium-Ion Conducting Solvent-Free Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)/Poly(Ethyl Methacrylate) Based Polymer Blend Electrolytes for Li Battery Applications
,”
Electrochim. Acta
,
93
(30), pp.
230
235
.
3.
Li
,
H.
,
Chen
,
Y.
,
Ma
,
X.
,
Shi
,
J.
,
Zhu
,
B.
, and
Zhu
,
L.
,
2011
, “
Gel Polymer Electrolytes Based on Active PVDF Separator for Lithium Ion Battery. I: Preparation and Property of PVDF/Poly(Dimethylsiloxane) Blending Membrane
,”
J. Membr. Sci.
,
379
(1–2), pp.
397
402
.
4.
Raghavan
,
P.
,
Manuel
,
J.
,
Zhao
,
X.
,
Kim
,
D.
,
Ahn
,
J.
, and
Nah
,
C.
,
2011
, “
Preparation and Electrochemical Characterization of Gel Polymer Electrolyte Based on Electrospun Polyacrylonitrile Nonwoven Membranes for Lithium Batteries
,”
J. Power Sources
,
196
(
16
), pp.
6742
6749
.
5.
Fisher
,
A. S.
,
Khalid
,
M. B.
,
Widstrom
,
M.
, and
Kofinas
,
P.
,
2011
, “
Solid Polymer Electrolytes With Sulfur Based Ionic Liquid for Lithium Batteries
,”
J. Power Sources
,
196
(
22
), pp.
9767
9773
.
6.
Bansal
,
D.
,
Meyer
,
B.
, and
Salomon
,
M.
,
2008
, “
Gelled Membranes for Li and Li-Ion Batteries Prepared by Electrospinning
,”
J. Power Sources
,
178
(
2
), pp.
848
851
.
7.
Cho
,
T.
,
Tanaka
,
M.
,
Ohnishi
,
H.
,
Kondo
,
Y.
,
Yoshikazu
,
M.
,
Nakamura
,
T.
, and
Sakai
,
T.
,
2010
, “
Composite Nonwoven Separator for Lithium-Ion Battery: Development and Characterization
,”
J. Power Sources
,
195
(
13
), pp.
4272
4277
.
8.
Raghavan
,
P.
,
Zhao
,
X.
,
Manuel
,
J.
,
Chauhan
,
G. S.
,
Ahn
,
J.
,
Ryu
,
H.
,
Ahn
,
H.
,
Kim
,
K.
, and
Nah
,
C.
,
2010
, “
Electrochemical Performance of Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-Based Nanocomposite Polymer Electrolytes Incorporating Ceramic Fillers and Room Temperature Ionic Liquid
,”
Electrochim. Acta
,
55
(
4
), pp.
1347
1354
.
9.
Ding
,
Y.
,
Zhang
,
P.
,
Long
,
Z.
,
Jiang
,
Y.
,
Xu
,
F.
, and
Di
,
W.
,
2009
, “
The Ionic Conductivity and Mechanical Property of Electrospun P(VdF-HFP)/PMMA Membranes for Lithium Ion Batteries
,”
J. Membr. Sci.
,
329
(1–2), pp.
56
59
.
10.
Li
,
Z. H.
,
Zhang
,
H. P.
,
Zhang
,
P.
,
Li
,
G. C.
,
Wu
,
Y. P.
, and
Zhou
,
X. D.
,
2008
, “
Effects of the Porous Structure on Conductivity of Nanocomposite Polymer Electrolyte for Lithium Ion Batteries
,”
J. Membr. Sci.
,
322
(
2
), pp.
416
422
.
11.
Gopalan
,
A. I.
,
Santhosh
,
P.
,
Manesh
,
K. M.
,
Nho
,
J. H.
,
Kim
,
S. H.
,
Hwang
,
C.
, and
Lee
,
K.
,
2008
, “
Development of Electrospun PVdF–PAN Membrane-Based Polymer Electrolytes for Lithium Batteries
,”
J. Membr. Sci.
,
325
(
2
), pp.
683
690
.
12.
Li
,
X.
,
Cheruvally
,
G.
,
Kim
,
J.
,
Choi
,
J.
,
Ahn
,
J.
,
Kim
,
K.
, and
Ahn
,
H.
,
2007
, “
Polymer Electrolytes Based on an Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Membrane for Lithium Batteries
,”
J. Power Sources
,
167
(
2
), pp.
491
498
.
13.
Gopalan
,
A. I.
,
Lee
,
K.
,
Manesh
,
K. M.
, and
Santhosh
,
P.
,
2008
, “
Poly(Vinylidene Fluoride)–Polydiphenylamine Composite Electrospun Membrane as High-Performance Polymer Electrolyte for Lithium Batteries
,”
J. Membr. Sci.
,
318
(1–2), pp.
422
428
.
14.
Xi
,
J.
,
Qiu
,
X.
,
Li
,
J.
,
Tang
,
X.
,
Zhu
,
W.
, and
Chen
,
L.
,
2006
, “
PVDF–PEO Blends Based Microporous Polymer Electrolyte: Effect of PEO on Pore Configurations and Ionic Conductivity
,”
J. Power Sources
,
157
(
1
), pp.
501
506
.
15.
Lee
,
Y.
,
Jeong
,
Y. B.
, and
Kim
,
D.
,
2010
, “
Cycling Performance of Lithium-Ion Batteries Assembled With a Hybrid Composite Membrane Prepared by an Electrospinning Method
,”
J. Power Sources
,
195
(
18
), pp.
6197
6201
.
16.
Zhang
,
H. P.
,
Zhang
,
P.
,
Li
,
Z. H.
,
Sun
,
M.
,
Wu
,
Y. P.
, and
Wu
,
H. Q.
,
2007
, “
A Novel Sandwiched Membrane as Polymer Electrolyte for Lithium Ion Battery
,”
Electrochem. Commun.
,
9
(
7
), pp.
1700
1703
.
17.
Shin
,
W.
,
Lee
,
Y.
, and
Kim
,
D.
,
2013
, “
Hybrid Composite Membranes Based on Polyethylene Separator and Al2O3 Nanoparticles for Lithium-Ion Batteries
,”
J. Nanosci. Nanotechnol.
,
13
(
5
), pp.
3705
3710
.
18.
Kim
,
J.
,
Cheruvally
,
G.
,
Li
,
X.
,
Ahn
,
J.
,
Kim
,
K.
, and
Ahn
,
H.
,
2008
, “
Preparation and Electrochemical Characterization of Electrospun, Microporous Membrane-Based Composite Polymer Electrolytes for Lithium Batteries
,”
J. Power Sources
,
178
(
2
), pp.
815
820
.
19.
Raghavan
,
P.
,
Zhao
,
X.
,
Kim
,
J.
,
Manuel
,
J.
,
Chauhan
,
G. S.
,
Ahn
,
J.
, and
Nah
,
C.
,
2008
, “
Ionic Conductivity and Electrochemical Properties of Nanocomposite Polymer Electrolytes Based on Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) With Nano-Sized Ceramic Fillers
,”
Electrochim. Acta
,
54
(
2
), pp.
228
234
.
20.
Raghavan
,
P.
,
Choi
,
J.
,
Ahn
,
J.
,
Cheruvally
,
G.
,
Chauhan
,
G. S.
,
Ahn
,
H.
, and
Nah
,
C.
,
2008
, “
Novel Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)–In Situ SiO2 Composite Membrane-Based Polymer Electrolyte for Lithium Batteries
,”
J. Power Sources
,
184
(
2
), pp.
437
443
.
21.
Huang
,
X.
,
2013
, “
Cellular Porous Polyvinylidene Fluoride Composite Membranes for Lithium-Ion Batteries
,”
J. Solid State Electrochem.
,
17
(
3
), pp.
591
597
.
22.
Kim
,
J.
,
Niedzicki
,
L.
,
Scheers
,
J.
,
Shin
,
C.
,
Lim
,
D.
,
Wieczorek
,
W.
,
Johansson
,
P.
,
Ahn
,
J.
,
Matic
,
A.
, and
Jacobsson
,
P.
,
2013
, “
Characterization of N-Butyl-N-Methyl-Pyrrolidinium Bis(Trifluoromethanesulfonyl)Imide-Based Polymer Electrolytes for High Safety Lithium Batteries
,”
J. Power Sources
,
224
(15), pp.
93
98
.
23.
Liao
,
C.
,
Sun
,
X.
, and
Dai
,
S.
,
2013
, “
Crosslinked Gel Polymer Electrolytes Based on Polyethylene Glycol Methacrylate and Ionic Liquid for Lithium Ion Battery Applications
,”
Electrochim. Acta
,
87
(1), pp.
889
894
.
24.
Gao
,
K.
,
Hu
,
X.
,
Dai
,
C.
, and
Yi
,
T.
,
2006
, “
Crystal Structures of Electrospun PVDF Membranes and Its Separator Application for Rechargeable Lithium Metal Cells
,”
Mater. Sci. Eng.: B
,
131
(
1–3
), pp.
100
105
.
25.
Lee
,
S. W.
,
Choi
,
S. W.
,
Jo
,
S. M.
,
Chin
,
B. D.
,
Kim
,
D. Y.
, and
Lee
,
K. Y.
,
2006
, “
Electrochemical Properties and Cycle Performance of Electrospun Poly(Vinylidene Fluoride)-Based Fibrous Membrane Electrolytes for Li-Ion Polymer Battery
,”
J. Power Sources
,
163
(
1
), pp.
41
46
.
26.
Liao
,
Y.
,
Sun
,
C.
,
Hu
,
S.
, and
Li
,
W.
,
2013
, “
Anti-Thermal Shrinkage Nanoparticles/Polymer and Ionic Liquid Based Gel Polymer Electrolyte for Lithium Ion Battery
,”
Electrochim. Acta
,
89
(1), pp.
461
468
.
27.
Jiang
,
W.
,
Liu
,
Z.
,
Kong
,
Q.
,
Yao
,
J.
,
Zhang
,
C.
,
Han
,
P.
, and
Cui
,
G.
,
2013
, “
A High Temperature Operating Nanofibrous Polyimide Separator in Li-Ion Battery
,”
Solid State Ionics
,
232
(7), pp.
44
48
.
28.
Plaimer
,
M.
,
Breitfuß
,
C.
,
Sinz
,
W.
,
Heindl
,
S. F.
,
Ellersdorfer
,
C.
,
Steffan
,
H.
,
Wilkening
,
M.
,
Hennige
,
V.
,
Tatschl
,
R.
,
Geier
,
A.
,
Schramm
,
C.
, and
Freunberger
,
S. A.
,
2016
, “
Evaluating the Trade-Off Between Mechanical and Electrochemical Performance of Separators for Lithium-Ion Batteries: Methodology and Application
,”
J. Power Sources
,
306
(29), pp.
702
710
.
29.
Xiao
,
Q.
,
Li
,
Z.
,
Gao
,
D.
, and
Zhang
,
H.
,
2009
, “
A Novel Sandwiched Membrane as Polymer Electrolyte for Application in Lithium-Ion Battery
,”
J. Membr. Sci.
,
326
(
2
), pp.
260
264
.
30.
Lee
,
J. Y.
,
Lee
,
Y. M.
,
Bhattacharya
,
B.
,
Nho
,
Y.
, and
Park
,
J.
,
2009
, “
Separator Grafted With Siloxane by Electron Beam Irradiation for Lithium Secondary Batteries
,”
Electrochim. Acta
,
54
(
18
), pp.
4312
4315
.
31.
Magistris
,
A.
,
Quartarone
,
E.
,
Mustarelli
,
P.
,
Saito
,
Y.
, and
Kataoka
,
H.
,
2002
, “
PVDF-Based Porous Polymer Electrolytes for Lithium Batteries
,”
Solid State Ionics
,
152
, pp.
347
354
.
32.
Deka
,
M.
, and
Kumar
,
A.
,
2011
, “
Electrical and Electrochemical Studies of Poly(Vinylidene Fluoride)–Clay Nanocomposite Gel Polymer Electrolytes for Li-Ion Batteries
,”
J. Power Sources
,
196
(
3
), pp.
1358
1364
.
33.
Subramania
,
A.
,
Sundaram
,
N. T. K.
,
Priya
,
A. R. S.
, and
Kumar
,
G. V.
,
2007
, “
Preparation of a Novel Composite Micro-Porous Polymer Electrolyte Membrane for High Performance Li-Ion Battery
,”
J. Membr. Sci.
,
294
(1–2), pp.
8
15
.
You do not currently have access to this content.