The Pr2CuO4 (PCO) submicrofiber precursors are prepared by electrospinning technique and the thermo-decomposition procedures are characterized by thermal gravity (TG), X-ray diffraction (XRD), Fourier transform infrared spectoscopy (FT-IR), and scanning electron microscopy (SEM), respectively. The fibrous PCO material was formed by sintering the precursors at 900 °C for 5 hrs. The highly porous PCO submicrofiber cathode forms good contact with the Ce0.9Gd0.1O1.95 (CGO) electrolyte after heat-treated at 900 °C for 2 hrs. The performance of PCO submicrofiber cathode is comparably studied with the powder counterpart at various temperatures. The porous microstructure of the submicrofiber cathode effectively increases the three-phase boundary (TPB), which promotes the surface oxygen diffusion and/or adsorption process on the cathode. The PCO submicrofiber cathode exhibits an area specific resistance (ASR) of 0.38 Ω cm2 at 700 °C in air, which is 30% less than the PCO powder cathode. The charge transfer process is the rate limiting step of the oxygen reduction reaction (ORR) on the submicrofiber cathode. The maximum power densities of the electrolyte-support single cell PCO|CGO|NiO-CGO reach 149 and 74.5 mW cm−2 at 800 and 700 °C, respectively. The preliminary results indicate that the PCO submicrofiber can be considered as potential cathode for intermediate temperature solid fuel cells (IT-SOFCs).

References

1.
Adler
,
S. B.
,
2004
, “
Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes
,”
Chem. Rev.
,
104
(
10
), pp.
4791
4843
.
2.
Pang
,
S.
,
Jiang
,
X.
,
Li
,
X.
,
Wang
,
Q.
, and
Su
,
Z.
,
2012
, “
Characterization of Ba-Deficient PrBa5+δ as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells
,”
J. Power Sources
,
204
, pp.
53
59
.
3.
Pelosato
,
R.
,
Cordaro
,
G.
,
Stucchi
,
D.
,
Cristiani
,
C.
, and
Dotelli
,
G. C.
,
2015
, “
Cobalt-Based Layered Perovskites as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells: A Brief Review
,”
J. Power Sources
,
298
, pp.
46
67
.
4.
Meng
,
F.
,
Xia
,
T.
,
Wang
,
J.
,
Shi
,
Z.
,
Lian
,
J.
,
Zhao
,
H.
,
Bassat
,
J.
, and
Grenier
,
J.
,
2014
, “
Evaluation of Layered Perovskites YBa1−xSrxCo2O5+δ as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
9
), pp.
4531
4543
.
5.
Jiang
,
X.
,
Shi
,
Y.
,
Zhou
,
W.
,
Li
,
X.
,
Su
,
Z.
,
Pang
,
S.
, and
Jiang
,
L.
,
2014
, “
Effects of Pr3+-Deficiency on Structure and Properties of PrBaCo2O5+δ Cathode Material: A Comparison With Ba2+-Deficiency Case
,”
J. Power Sources
,
272
, pp.
371
377
.
6.
Zhou
,
Q.
,
Wei
,
T.
,
Li
,
Z.
,
An
,
D.
,
Tong
,
X.
,
Ji
,
Z.
,
Wang
,
W.
,
Lu
,
H.
,
Sun
,
L.
,
Zhang
,
Z.
, and
Xu
,
K.
,
2015
, “
Synthesis and Characterization of BaBi0.05Co0.8Nb0.15O3+δ as a Potential IT-SOFCs Cathode Material
,”
J. Alloy. Compd.
,
627
, pp.
320
323
.
7.
Hosoi
,
K.
,
Sakai
,
T.
,
Idaa
,
S.
, and
Ishihara
,
T.
,
2015
, “
Oxygen Nonstoichiometry and Cathodic Property of Ce0.6Mn0.3Fe0.1O2-δ for High Temperature Steam Electrolysis Cell Using LaGaO3-Based Oxide Electrolyte
,”
ECS Trans.
,
68
(
1
), pp.
3315
3322
.
8.
Huang
,
X.
,
Shin
,
T. H.
,
Zhou
,
J.
, and
Irvine
,
J. T. S.
,
2015
, “
Hierarchically Nanoporous La1.7Ca0.3CuO4-δ and La1.7Ca0.3NixCu1-xO4-δ (0.25 ≤ x ≤ 0.75) as Potential Cathode Materials for IT-SOFCs
,”
J. Mater. Chem. A
,
3
(
25
), pp.
13468
13475
.
9.
Cascos
,
V.
,
Martínez-Coronado
,
R.
, and
Alonso
,
J. A.
,
2015
, “
Structural and Electrical Characterization of the Co-Doped Ca2Fe2O5 Brown Millerite: Evaluation as SOFC-Cathode Materials
,”
Int. J. Hydrogen Energy
,
40
(
15
), pp.
5456
5468
.
10.
Liu
,
F.
,
Dang
,
J.
,
Hou
,
J.
,
Qian
,
J.
,
Zhu
,
Z.
,
Wang
,
Z.
, and
Liu
,
W.
,
2015
, “
Study on New BaCe0.7In0.3O2-δ–Gd0.1Ce0.9O2-δ Composite Electrolytes for Intermediate-Temperature Solid Oxide Fuel Cells
,”
J. Alloy. Compd.
,
639
, pp.
252
258
.
11.
Liu
,
W.
,
Lipner
,
J.
,
Moran
,
C. H.
,
Feng
,
L.
,
Li
,
X.
,
Thomopoulos
,
S.
, and
Xia
,
Y.
,
2015
, “
Generation of Electrospun Nanofibers With Controllable Degrees of Crimping Through a Simple, Plasticizer-Based Treatment
,”
Adv. Mater.
,
27
(
16
), pp.
2583
2588
.
12.
Li
,
X.
,
Xu
,
J.
,
Mei
,
L.
,
Zhang
,
Z.
,
Cui
,
C.
,
Liu
,
H.
,
Ma
,
J.
, and
Dou
,
S.
,
2015
, “
Electrospinning of Crystalline MoO3@C Nanofibers for High-Rate Lithium Storage
,”
J. Mater. Chem. A
,
3
(
7
), pp.
3257
3260
.
13.
Jang
,
B. O.
,
Park
,
S. H.
, and
Lee
,
W. J.
,
2013
, “
Electrospun Co–Sn Alloy/Carbon Nanofibers Composite Anode for Lithium Ion Batteries
,”
J. Alloy. Compd.
,
574
, pp.
325
330
.
14.
Ozel
,
F.
,
Kus
,
M.
,
Yar
,
A.
,
Arkan
,
E.
,
Yigit
,
M. Z.
,
Aljabour
,
A.
,
Büyükcelebi
,
S.
,
Tozlu
,
C.
, and
Ersoz
,
M.
,
2015
, “
Electrospinning of Cu2ZnSnSe4-xSx Nanofibers by Using PAN as Template
,”
Mater. Lett.
,
140
, pp.
23
26
.
15.
Li
,
Z.
,
Zhang
,
J.
, and
Lou
,
X. W.
,
2015
, “
Hollow Carbon Nanofibers Filled With MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium–Sulfur Batteries
,”
Angew. Chem. Int. Ed.
,
54
(
44
), pp.
12886
12890
.
16.
Mondal
,
S.
,
Rana
,
U.
, and
Malik
,
S.
,
2015
, “
Graphene Quantum Dots Doped Polyaniline Nanofiber as High Performance Supercapacitor Electrode Materials
,”
Chem. Commun.
,
51
(
62
), pp.
12365
12368
.
17.
Song
,
M. J.
,
Kim
,
I. T.
,
Kim
,
Y. B.
, and
Shin
,
M. W.
,
2015
, “
Self-Standing, Binder-Free Electrospun Co3O4/Carbon Nanofiber Composites for Non-Aqueous Li-Air Batteries
,”
Electrochim. Acta
,
182
, pp.
289
296
.
18.
Saeed
,
K.
, and
Park
,
S.
,
2010
, “
Preparation and Characterization of Multi-Walled Carbon Nanotubes/Polyacrylonitrile Nanofibers
,”
J. Polym. Res.
,
17
(
4
), pp.
535
540
.
19.
Zhi
,
M.
,
Lee
,
S.
,
Miller
,
N.
,
Menzlerd
,
N. H.
, and
Wu
,
N.
,
2012
, “
An Intermediate-Temperature Solid Oxide Fuel Cell With Electrospun Nanofiber Cathode
,”
Energy Environ. Sci.
,
5
(
5
), pp.
7066
7071
.
20.
Enrico
,
A.
,
Aliakbarian
,
B.
,
Perego
,
P.
, and
Costamagna
,
P.
,
2015
, “
Micro-Modelling of IT-SOFC Electrodes Manufactured Through Electrospinning
,”
ECS Trans.
,
68
(
1
), pp.
857
865
.
21.
Li
,
Q.
,
Sun
,
L.
,
Zhao
,
H.
,
Wang
,
H.
,
Huo
,
L.
,
Rougier
,
A.
,
Fourcade
,
S. J.
, and
Grenier
,
C.
,
2014
, “
La1.6Sr0.4NiO4 One-Dimensional Nanofibers as Cathode for Solid Oxide Fuel Cells
,”
J. Power Sources
,
263
, pp.
125
129
.
22.
Sun
,
L. P.
,
Li
,
Q.
,
Zhao
,
H.
,
Hao
,
J. H.
,
Huo
,
L. H.
,
Pang
,
G.
,
Shi
,
Z.
, and
Feng
,
S.
,
2012
, “
Electrochemical Performance of Nd1.93Sr0.07CuO4 Nanofiber as Cathode Material for SOFC
,”
Int. J. Hydrogen Energy
,
37
(
16
), pp.
11955
11962
.
23.
Kaluzhskikh
,
M. S.
,
Kazakov
,
S. M.
,
Mazo
,
G. N.
,
Istomin
,
S. Y.
,
Antipov
,
E. V.
,
Gippius
,
A. A.
,
Fedotov
,
Y.
,
Bredikhin
,
S. I.
,
Liu
,
Y.
,
Svensson
,
G.
, and
Shen
,
Z.
,
2011
, “
High-Temperature Crystal Structure and Transport Properties of the Layered Cuprates Ln2CuO4, Ln = Pr, Nd and Sm
,”
J. Solid State Chem.
,
184
(
3
), pp.
698
704
.
24.
Lyskov
,
N. V.
,
Kolchina
,
L. M.
,
Galin
,
M. Z.
, and
Mazo
,
G. N.
,
2015
, “
Optimization of Composite Cathode Based on Praseodymium Cuprate for Intermediate-Temperature Solid Oxide Fuel Cells
,”
J. Electrochem.
,
51
(
5
), pp.
520
528
.
25.
Sun
,
C.
,
Li
,
Q.
,
Sun
,
L.
,
Zhao
,
H.
, and
Huo
,
L.
,
2014
, “
Characterization and Electrochemical Performances of Pr2CuO4 as a Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells
,”
Mater. Res. Bull.
,
53
, pp.
65
69
.
26.
Kolchina
,
L. M.
,
Lyskov
,
N. V.
,
Petukhov
,
D. I.
, and
Mazo
,
G. N.
,
2014
, “
Electrochemical Characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 Composite Cathodes for Solid Oxide Fuel Cells
,”
J. Alloy. Compd.
,
605
, pp.
84
95
.
27.
Lyskov
,
N. V.
,
Kaluzhskikh
,
M. S.
,
Leonova
,
L. S.
,
Mazo
,
G. N.
,
Istomin
,
S. Y.
, and
Antipov
,
E. V.
,
2012
, “
Electrochemical Characterization of Pr2CuO4 Cathode for IT-SOFC
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
18357
18364
.
28.
Chiu
,
T. W.
,
Wang
,
W. R.
, and
Wu
,
J. S.
, “
Synthesis of Pr2CuO4 Powders by Using a Glycine–Nitrate Combustion Method for Cathode Application in Intermediate-Temperature Solid Oxide Fuel Cells
,”
Ceram. Int.
,
41
(
S1
), pp.
S675
S679
.
29.
Zheng
,
K. G.
,
Agnieszka
,
S.
, and
Konrad
,
S.
,
2012
, “
Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) Oxides as Cathode Materials for IT-SOFCs
,”
Mater. Res. Bull.
,
47
(
12
), pp.
4089
4095
.
30.
Singh
,
K. K.
,
Ganguly
,
P.
, and
Goodenough
,
J. B.
,
1984
, “
Unusual Effects of Anisotropic Bonding in Cu (II) and Ni (II) Oxides With K2NiF4 Structure
,”
J. Solid State Chem.
,
52
(
3
), pp.
254
273
.
31.
Fukunaga
,
H.
,
Koyama
,
M.
,
Takahashi
,
N.
,
Wen
,
C.
, and
Yamada
,
K.
,
2000
, “
Reaction Model of Dense Sm0.5Sr0.5CoO3 as SOFC Cathode
,”
Solid State Ionics
,
132
(
3–4
), pp.
279
285
.
32.
Souza
,
R. A.
, and
Kilner
,
J. A.
,
1998
, “
Oxygen Transport in La1−xSrxMn1−yCoyO3±δ Perovskites Part I. Oxygen Tracer Diffusion
,”
Solid State Ionics
,
106
(
3–4
), pp.
175
187
.
33.
Souza
,
R. A.
, and
Kilner
,
J. A.
,
1999
, “
Oxygen Transport in La1−xSrxMn1−yCoyO3±δ Perovskites Part II. Oxygen Tracer Diffusion
,”
Solid State Ionics
,
126
(
1
), pp.
153
161
.
34.
Sun
,
L. P.
,
Zhao
,
H.
,
Wang
,
W. X.
,
Li
,
Q.
, and
Huo
,
L. H.
,
2014
, “
Electrochemical Performance of La2CuO4 Nanotube Materials Prepared Via Electrospinning Method
,”
Chin. J. Inorg. Chem.
,
30
(
4
), pp.
757
762
.
35.
Sun
,
L. P.
,
Li
,
Q.
,
Zhao
,
H.
,
Wang
,
H. L.
, and
Huo
,
L. H.
,
2014
, “
Preparation and Electrochemical Properties of La1.6Sr0.4NiO4-Ag Hollow Nanofibers
,”
Chin. J. Inorg. Chem.
,
30
(
5
), pp.
1045
1050
.
36.
Pinedo
,
R.
,
Ruiz de Larramendi
,
I.
,
Jimenez de Aberasturi
,
D.
, and
Gil de Muro
,
I.
,
2011
, “
Synthesis of Highly Ordered Three-Dimensional Nanostructures and the Influence of the Temperature on Their Application as Solid Oxide Fuel Cells Cathodes
,”
J. Power Sources
,
196
(
9
), pp.
4174
4180
.
37.
Zhi
,
M. J.
, and
Mariani
,
N.
,
2011
, “
Nanofiber Scaffold for Cathode of Solid Oxide Fuel Cell
,”
Energy Environ Sci.
,
4
(
2
), pp.
417
420
.
38.
Hsieh
,
Y. D.
,
Chan
,
Y. H.
, and
Shy
,
S. S.
,
2015
, “
Effects of Pressurization and Temperature on Power Generating Characteristics and Impedances of Anode-Supported and Electrolyte Supported Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
299
, pp.
1
10
.
You do not currently have access to this content.