When synthetic natural gas (SNG) is produced from coal and used as a fuel in the internal reforming molten carbonate fuel cell (ir-MCFC), electric efficiency can be no greater than 31%. This is because there are several exothermic reactions in the processes of converting coal to SNG, so that a maximum 64% of coal's energy is converted into SNG energy. This results in a lower efficiency than when the ir-MCFC with the electric efficiency of 48% is fueled by natural gas (NG). To increase electric efficiency with SNG, it is necessary to recover the exothermic heat generated from the processes of converting coal to SNG as steam, which can then be used in a steam turbine. When steam produced in the gasification, water gas shift (WGS), and methanation processes is used in a steam turbine, the gross electric efficiency will become 41%. If the steam and auxiliary power for CO2 capture process is consumed more, the net efficiency will be 27%. Use of additional steam from the exhausted gas of fuel cell can increase the total net efficiency to 49%.

References

References
1.
Brandon
,
N.
, and
Thompsett
,
D.
, eds.,
2005
,
Fuel Cells Compendium
,
Elsevier
,
New York
.
2.
McPhail
,
S.
,
Moreno
,
A.
, and
Bove
,
R.
, “
International Status of Molten Carbonate Fuel Cell (MCFC) Technology, Report Ricerca Sistema Elettrico/2009/181, Accordo di Programma Ministero dello Sviluppo Economico—ENEA
,” Last accessed Mar. 25, 2016, http://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/cell-a-combustibile/rse181.pdf/view
3.
Seo
,
H.-K.
,
Park
,
S.
,
Lee
,
J.
,
Kim
,
M.
,
Chung
,
S.-W.
,
Chung
,
J.-H.
, and
Kim
,
K.
,
2011
, “
Effect of Operating Factors in the Coal Gasification Reaction
,”
Korean J. Chem. Eng.
,
28
(
9
), pp.
1851
1858
.
4.
Yun
,
Y.
, and
Yoo
,
Y. D.
,
2001
, “
Performance of a Pilot-Scale Gasifier for Indonesian Baiduri Coal
,”
Korean J. Chem. Eng.
,
18
(
5
), pp.
679
685
.
5.
NETL, 2011, “Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia,” National Energy Technology Laboratory, Washington, DC, accessed Mar. 25,
2016
, https://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/Coal/SNGAmmonia_FR_20110706.pdf
6.
Carapellucci
,
R.
,
Saia
,
R.
, and
Giordano
,
L.
,
2014
, “
Study of Gas-Steam Combined Cycle Power Plants Integrated With MCFC for Carbon Dioxide Capture
,”
Energy Procedia
,
45
, pp.
1155
1164
.
7.
Mirita
,
H.
,
Yoshiba
,
F.
,
Woudstra
,
N.
,
Hemmes
,
K.
, and
Spliethoff
,
H.
,
2004
, “
Feasibility Study of Wood Biomass Gasification/Molten Carbonate Fuel Cell Power System-Comparative Characterization of Fuel Cell and Gas Turbine Systems
,”
J. Power Sources
,
138
(1–2), pp.
31
40
.
8.
Toonssen
,
R.
,
Sallai
,
S.
,
Aravind
,
P. V.
,
Woudstra
,
N.
, and
Verkooijen
,
A. H. M.
,
2011
, “
Alternative System Design of Biomass Gasification SOFC/GT Hybrid Systems
,”
J. Hydrogen Energy
,
36
(
16
), pp.
10414
10425
.
9.
Asimptote, 2016, “cycle-tempo Documentation,” Delft, The Netherlands, accessed Mar. 25, 2016, http://www.asimptote.nl/software/cycle-tempo/cycle-tempo-documentation/
10.
Morita
,
H.
,
Komoda
,
M.
,
Mugikura
,
Y.
,
Izaki
,
Y.
,
Watanabe
,
T.
,
Masuda
,
Y.
, and
Matsuyama
,
T.
,
2002
, “
Performance Analysis of Molten Carbonate Fuel Cell Using a Li/Na Electrolyte
,”
J. Power Sources
,
112
(
2
), pp.
509
518
.
11.
Woudstra
,
N.
,
van der Stelt
,
T. P.
, and
Hemmes
,
K.
,
2006
, “
The Thermodynamic Evaluation and Optimization of Fuel Cell Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
2
), pp.
155
164
.
12.
Ahmeda
,
S.
,
Aitani
,
A.
,
Rahman
,
F.
,
Al-Dawood
,
A.
, and
Al-Muhaish
,
F.
,
2009
, “
Decomposition of Hydrocarbon to Hydrogen and Carbon
,”
Appl. Catal. A
,
359
(1–2), pp.
1
24
.
13.
Katikaneni
,
S.
,
Yuh
,
C.
,
Abens
,
S.
, and
Farooque
,
M.
,
2002
, “
The Direct Carbonate Fuel Cell Technology: Advances in Multi-Fuel Processing and Internal Reforming
,”
Catal. Today
,
77
(
1–2
), pp.
99
106
.
14.
Breeze
,
P.
,
2014
,
Power Generation Technologies
,
2nd ed.
,
Newnes
,
Oxford, UK
.
15.
Jansen
,
D.
, and
Mozaffarian
,
M.
,
1997
, “
Advanced Fuel Cell Energy Conversion Systems
,”
Energy Convers. Manage.
38
(
10–13
), pp.
957
967
.
16.
Haldor Topsøe, 2009
, “
Sulphur Resistant/Sour Water-Gas Shift Catalyst
,” Haldor Topsøe A/S, Lyngby, Denmark, accessed Mar. 25, 2016, http://www.topsoefuelcell.com/business_areas/gasification_based/Processes/~/media/PDF%20files/SSK/topsoe_SSK%20brochure_aug09.ashx
17.
UOP Honeywell, 2010, “UOP SelexolTM Technology for Acid Gas Removal,” UOP, Des Plaines, IL, accessed Mar. 25, 2016, http://www.uop.com/?document=uop-selexol-technology-for-acid-gas-removal&download=1
18.
Selman
,
J. R.
,
Uchida
,
I.
,
Wendt
,
H.
,
Shores
,
D. A.
, and
Fuller
,
T. F.
, eds., 1997,
Carbonate Fuel Cell Technology IV
,
The Electrochemical Society
,
Pennington, NJ
.
19.
Holdor Topsøe, 2009
, “
From Solid Fuels to Substitute Natural Gas (SNG) Using TREMP TM
,” Haldor Topsøe A/S, Lyngby, Denmark, accessed Mar. 25, 2016, http://www.topsoefuelcell.com/business_areas/gasification_based/Processes/~/media/PDF%20files/SNG/Topsoe_TREMP.ashx
20.
NETL, 2013, “Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity,” National Energy Technology Laboratory, Washington, DC, accessed Mar. 25, 2016, http://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/OE/BitBase_FinRep_Rev2a-3_20130919_1.pdf
You do not currently have access to this content.