The performance of a mechanically rechargeable aluminum (Al)–air cell, fabricated with low-cost materials including low-grade aluminum foil and carbon paper electrodes, was evaluated. The design adopted a free gravity flow for the electrolyte to eliminate the use of an external pump. A tank for storing waste electrolyte was designed with a dedicated channel for the collection of hydrogen gas generated during the cell discharge. The cell achieved a high utilization efficiency of aluminum. Considering both the electricity and hydrogen generated, an overall utilization efficiency of around 90% or even higher could be achieved under different working voltages. Results of repeated recharging/discharging showed that the performances of the cell could be maintained for repeated refilling.

References

References
1.
Wang
,
H.
,
Leung
,
D.
,
Leung
,
M.
, and
Ni
,
M.
,
2009
, “
A Review on Hydrogen Production Using Aluminum and Aluminum Alloys
,”
Renewable Sustainable Energy Rev.
,
13
(
4
), pp.
845
853
.
2.
Armand
,
M.
, and
Tarascon
,
J.-M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
3.
Winter
,
M.
, and
Brodd
,
R. J.
,
2004
, “
What Are Batteries, Fuel Cells, and Supercapacitors?
,”
Chem. Rev.
,
105
(
10
), pp.
4245
4270
.
4.
Li
,
Q.
, and
Bjerrum
,
N. J.
,
2002
, “
Aluminum as Anode for Energy Storage and Conversion: A Review
,”
J. Power Sources
,
110
(
1
), pp.
1
10
.
5.
Wang
,
H.
,
Leung
,
D. Y.
, and
Leung
,
M. K.
,
2012
, “
Energy Analysis of Hydrogen and Electricity Production From Aluminum-Based Processes
,”
Appl. Energy
,
90
(
1
), pp.
100
105
.
6.
Shkolnikov
,
E.
,
Zhuk
,
A.
, and
Vlaskin
,
M.
,
2011
, “
Aluminum as Energy Carrier: Feasibility Analysis and Current Technologies Overview
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4611
4623
.
7.
Zaromb
,
S.
,
1962
, “
The Use and Behavior of Aluminum Anodes in Alkaline Primary Batteries
,”
J. Electrochem. Soc.
,
109
(
12
), pp.
1125
1130
.
8.
Edelstein
,
S.
,
2014
, “
Aluminum–Air Battery Developer Phinergy Partners With Alcoa
,”
Green Car Reports
, epub.
9.
Tuck
,
C. D.
,
1991
,
Modern Battery Technology
,
Ellis Horwood
,
New York
.
10.
Armstrong
,
R.
, and
Braham
,
V.
,
1996
, “
The Mechanism of Aluminium Corrosion in Alkaline Solutions
,”
Corros. Sci.
,
38
(
9
), pp.
1463
1471
.
11.
Doche
,
M.
,
Novel-Cattin
,
F.
,
Durand
,
R.
, and
Rameau
,
J.
,
1997
, “
Characterization of Different Grades of Aluminum Anodes for Aluminum/Air Batteries
,”
J. Power Sources
,
65
(
1
), pp.
197
205
.
12.
Bernard
,
J.
,
Chatenet
,
M.
, and
Dalard
,
F.
,
2006
, “
Understanding Aluminum Behaviour in Aqueous Alkaline Solution Using Coupled Techniques: Part I. Rotating Ring-Disk Study
,”
Electrochim. Acta
,
52
(
1
), pp.
86
93
.
13.
Davis
,
J. R.
,
1999
,
Corrosion of Aluminum and Aluminum Alloys
,
ASM International
,
Materials Park, OH
.
14.
Hunter
,
J. A.
, ed.,
1989
,
The Anodic Behavior of Aluminium Alloys in Alkaline Electrolytes
,
University of Oxford
,
Oxford, UK
.
15.
Macdonald
,
D.
,
Lee
,
K.
,
Moccari
,
A.
, and
Harrington
,
D.
,
1988
, “
Evaluation of Alloy Anodes for Aluminum–Air Batteries: Corrosion Studies
,”
Corrosion
,
44
(
9
), pp.
652
657
.
16.
Zhang
,
Z.
,
Zuo
,
C.
,
Liu
,
Z.
,
Yu
,
Y.
,
Zuo
,
Y.
, and
Song
,
Y.
,
2014
, “
All-Solid-State Al–Air Batteries With Polymer Alkaline Gel Electrolyte
,”
J. Power Sources
,
251
, pp.
470
475
.
17.
Abdel-Gaber
,
A.
,
Khamis
,
E.
,
Abo-ElDahab
,
H.
, and
Adeel
,
S.
,
2008
, “
Inhibition of Aluminium Corrosion in Alkaline Solutions Using Natural Compound
,”
Mater. Chem. Phys.
,
109
(
2
), pp.
297
305
.
18.
Wang
,
L.
,
Liu
,
F.
,
Wang
,
W.
,
Yang
,
G.
,
Zheng
,
D.
,
Wu
,
Z.
, and
Leung
,
M. K.
,
2014
, “
A High-Capacity Dual-Electrolyte Aluminum/Air Electrochemical Cell
,”
RSC Adv.
,
4
(
58
), pp.
30857
30863
.
19.
Fan
,
L.
, and
Lu
,
H.
,
2015
, “
The Effect of Grain Size on Aluminum Anodes for Al–Air Batteries in Alkaline Electrolytes
,”
J. Power Sources
,
284
, pp.
409
415
.
20.
Wang
,
L.
,
Wang
,
W.
,
Yang
,
G.
,
Liu
,
D.
,
Xuan
,
J.
,
Wang
,
H.
,
Leung
,
M. K.
, and
Liu
,
F.
,
2013
, “
A Hybrid Aluminum/Hydrogen/Air Cell System
,”
Int. J. Hydrogen Energy
,
38
(
34
), pp.
14801
14809
.
21.
Chu
,
D.
, and
Savinell
,
R. F.
,
1991
, “
Experimental Data on Aluminum Dissolution in KOH Electrolytes
,”
Electrochim. Acta
,
36
(
10
), pp.
1631
1638
.
22.
Choate
,
W. T.
, and
Green
,
J. A. S.
,
2007
, “
U.S. Energy Requirements for Aluminum Production: Historical Perspective, Theoretical Limits and Current Practices
,”
U.S. Department of Energy
,
Washington, DC
.
23.
LME, 2016, “
LME Aluminium
,” London Metal Exchange Ltd., London, https://www.lme.com/metals/non-ferrous/aluminium/
24.
Logan Lab,
2015
, “
Frequently Asked Questions About MFCs and Our Replies
,”
Penn State University
,
University Park, PA
, http://www.engr.psu.edu/ce/enve/logan/bioenergy/pdf/MFC_QandA.pdf
25.
Satyapal
,
S.
,
2015
, “
2015 Annual Progress Report: No. I. Introduction
,” U.S. Department of Energy Hydrogen and Fuel Cell Program, Washington, DC, https://www.hydrogen.energy.gov/annual_progress15.html
26.
Riis
,
T.
,
Hagen
,
E. F.
,
Vie
,
P.
, and
Ulleberg
,
Ø.
,
2006
, “
Hydrogen Production and Storage—R&D Priorities and Gaps
,” IEA Hydrogen Implementing Agreement (HIA), International Energy Agency (
IEA
), Paris.
27.
Zhuk
,
A. Z.
,
Sheindlin
,
A. E.
,
Kleymenov
,
B. V.
,
Shkolnikov
,
E. I.
, and
Lopatin
,
M. Y.
,
2006
, “
Use of Low-Cost Aluminum in Electric Energy Production
,”
J. Power Sources
,
157
(
2
), pp.
921
926
.
You do not currently have access to this content.