The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate–carbon slurry in contact with the anode, has been investigated using current–voltage curves. Four different anode current collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector, due to its low catalytic activity.

References

References
1.
Deleebeeck
,
L.
, and
Hansen
,
K. K.
,
2014
, “
Hybrid Direct Carbon Fuel Cells and Their Reaction Mechanisms—A Review
,”
J. Solid State Electrochem.
,
18
(
4
), pp.
861
882
.
2.
Deleebeeck
,
L.
, and
Hansen
,
K. K.
,
2014
, “
HDCFC Performance as a Function of Anode Atmosphere (N2-CO2)
,”
J. Electrochem. Soc.
,
161
(
1
), pp.
F33
F46
.
3.
Chien
,
A. C.
,
Arenillas
,
A.
,
Jiang
,
C.
, and
Irvine
,
J. T. S.
,
2014
, “
Performance of Direct Carbon Fuel Cells Operated on Coal and Effect of Operation Mode
,”
J. Electrochem. Soc.
,
161
(
5
), pp.
F588
F593
.
4.
Elleuch
,
A.
,
Sahraoui
,
M.
,
Boussetta
,
A.
,
Halouani
,
K.
, and
Li
,
Y.
,
2014
, “
2-D Numerical Modeling and Experimental Investigation of Electrochemical Mechanisms Coupled With Heat and Mass Transfer in a Planar Direct Carbon Fuel Cell
,”
J. Power Sources
,
248
, pp.
44
57
.
5.
Adeniyi
,
O. D.
, and
Ewan
,
B. C. R.
,
2012
, “
Electrochemical Conversion of Switchgrass and Poplar in Molten Carbonate Direct Carbon Fuel Cell
,”
Int. J. Ambient Energy
,
33
(
4
), pp.
204
208
.
6.
Xu
,
X.
,
Zhou
,
W.
,
Liang
,
F.
, and
Zhu
,
Z.
,
2013
, “
A Comparative Study of Different Carbon Fuels in an Electrolyte-Supported Hybrid Direct Carbon Fuel Cell
,”
Appl. Energy
,
108
, pp.
402
409
.
7.
Xu
,
X.
,
Zhou
,
W.
,
Liang
,
F.
, and
Zhu
,
Z.
,
2013
, “
Optimization of a Direct Carbon Fuel Cell for Operation Below 700 °C
,”
Int. J. Hydrogen Energy
,
38
(
13
), pp.
5367
5374
.
8.
Elleuch
,
A.
,
Yu
,
J.
,
Boussetta
,
A.
,
Halouani
,
K.
, and
Li
,
Y.
,
2013
, “
Electrochemical Oxidation of Graphite in an Intermediate Temperature Direct Carbon Fuel Cell Based on Two-Phases Electrolyte
,”
Int. J. Hydrogen Energy
,
38
(
20
), pp.
8514
8523
.
9.
Elleuch
,
A.
,
Boussetta
,
A.
,
Yu
,
J.
,
Halouani
,
K.
, and
Li
,
Y.
,
2013
, “
Experimental Investigation of Direct Carbon Fuel Cell Fueled by Almond Shell Biochar: Part I. Physico-Chemical Characterization of the Biochar Fuel and Cell Performance Examination
,”
Int. J. Hydrogen Energy
,
38
(
36
), pp.
16590
16604
.
10.
Elleuch
,
A.
,
Bousetta
,
A.
,
Halouani
,
K.
, and
Li
,
Y.
,
2013
, “
Experimental Investigation of Direct Carbon Fuel Cell Fueled by Almond Shell Biochar: Part II. Improvement of Cell Stability and Performance by Three-Layer Planar Configuration
,”
Int. J. Hydrogen Energy
,
38
(
36
), pp.
16605
16614
.
11.
Yu
,
J.
,
Yu
,
B.
, and
Li
,
Y.
,
2013
, “
Electrochemical Oxidation of Catalytic Grown Carbon Fiber in a Direct Carbon Fuel Cell Using Ce0.8Sm0.2O1.9-Carbonate Electrolyte
,”
Int. J. Hydrogen Energy
,
38
(
36
), pp.
16615
16622
.
12.
Cantero-Tubilla
,
B.
,
Xu
,
C.
,
Zondlo
,
J. W.
,
Sabolsky
,
K.
, and
Sabolsky
,
E. M.
,
2013
, “
Investigation of Anode Configurations and Fuel Mixtures on the Performance of Direct Carbon Fuel Cells (DCFCs)
,”
J. Power Sources
,
238
, pp.
227
235
.
13.
Yun
,
U. J.
,
Jo
,
M. J.
,
Lee
,
J. W.
,
Lee
,
S. B.
,
Lim
,
T. H.
,
Park
,
S. J.
, and
Song
,
R. H.
,
2013
, “
Operating Characteristics of a Tubular Direct Carbon Fuel Cell Based on a General Anode Supported Solid Oxide Fuel Cell
,”
Ind. Eng. Chem. Res.
,
52
(
44
), pp.
15466
15471
.
14.
Tang
,
Y.
, and
Liu
,
J.
,
2010
, “
Effect of Anode and Boudouard Reaction Catalysts on the Performance of Direct Carbon Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11188
11193
.
15.
Xie
,
Y.
,
Tang
,
Y.
, and
Liu
,
J.
,
2013
, “
A Verification of the Reaction Mechanism of Direct Carbon Solid Oxide Fuel Cells
,”
J. Solid State Electrochem.
,
17
(
1
), pp.
121
127
.
16.
Wang
,
C. W.
,
Liu
,
J.
,
Zeng
,
J.
,
Yin
,
J. L.
,
Wang
,
G. L.
, and
Cao
,
D. X.
,
2013
, “
Significant Improvement of Electrooxidation Performance of Carbon in Molten Carbonates by the Introduction of Transition Metal Oxides
,”
J. Power Sources
,
233
, pp.
244
251
.
17.
Dudek
,
M.
, and
Tomczyk
,
P.
,
2011
, “
Composite Fuel for Direct Carbon Fuel Cell
,”
Catal. Today
,
176
(
1
), pp.
388
392
.
18.
Nabae
,
Y.
,
Pointon
,
K. D.
, and
Irvine
,
J. T. S.
,
2009
, “
Ni/C Slurries Based on Molten Carbonates as a Fuel for Hybrid Direct Carbon Fuel Cells
,”
J. Electrochem. Soc.
,
156
(
6
), pp.
B716
B720
.
19.
Li
,
C.
,
Shi
,
Y.
, and
Cai
,
N.
,
2010
, “
Performance Improvement of Direct Carbon Fuel Cell by Introducing Catalytic Gasification Process
,”
J. Power Sources
,
195
(
15
), pp.
4660
4666
.
20.
Wang
,
M.-J.
,
Gray
,
C. A.
,
Reznek
,
S. A.
,
Mahmud
,
K.
, and
Kutsovsky
,
Y.
,
2004
, “
Carbon Black
,”
Kirk-Othmer Encyclopedia of Chemical Technology
,
4th ed.
,
Wiley
,
Hoboken, NJ
, pp.
761
803
.
21.
Malinowska
,
B.
,
Cassir
,
M.
,
Delcorso
,
F.
, and
Devynck
,
J.
,
1995
, “
Behaviour of Nickel Species in Molten Li2CO3 + Na2CO3 + K2CO3. Part 1. Thermodynamic Approach and Electrochemical Characterization Under P(CO2) = 1 atm
,”
J. Electroanal. Chem.
,
389
, pp.
21
29
.
22.
Wyatt
,
M.
, and
Fisher
,
J. M.
,
1988
, “
Control of Corrosion in Molten Carbonate Fuel Cells—The Application of Platinum Group Metals in Anode Components
,”
Platinum Met. Rev.
,
32
(
4
), pp.
200
203
.
23.
Qingfeng
,
L.
,
Borup
,
F.
,
Petrushina
,
I.
, and
Bjerrum
,
N. J.
,
1999
, “
Complex Formation During Dissolution of Metal Oxides in Molten Alkali Carbonates
,”
J. Electrochem. Soc.
,
146
(
7
), pp.
2449
2454
.
24.
Ippolito
,
D.
,
Deleebeeck
,
L.
, and
Hansen
,
K. K.
,
2014
, “
Effect of CeO2 Infiltration on the Hybrid Direct Carbon Fuel Cell Performance
,”
ECS Trans.
,
61
(
1
), pp.
255
267
.
25.
Ruflin
,
J.
,
Perwich
,
A. D.
, II
,
Brett
,
C.
,
Berner
,
J. K.
, and
Lux
,
S. M.
,
2012
, “
Direct Carbon Fuel Cell: A Proposed Hybrid Design to Improve Commercialization Potential
,”
J. Power Sources
,
213
, pp.
275
286
.
26.
Nishina
,
T.
,
Takahashi
,
M.
, and
Uchida
,
I.
,
1990
, “
Gas Electrode Reactions in Molten Carbonate Media. IV. Electrode Kinetics and Mechanism of Hydrogen Oxidation in (Li + K)2CO3 Eutectic
,”
J. Electrochem. Soc.
,
137
(
4
), pp.
1112
1121
.
27.
Deleebeeck
,
L.
,
Ippolito
,
D.
, and
Hansen
,
K. K.
,
2015
, “
Enhancing Hybrid Direct Carbon Fuel Cell Anode Performance Using Ag2O
,”
Electrochim. Acta
,
152
, pp.
222
239
.
28.
Deleebeeck
,
L.
,
Ippolito
,
D.
, and
Hansen
,
K. K.
,
2014
, “
Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs
,”
ECS Trans.
,
61
(
1
), pp.
225
234
.
29.
Kaklidis
,
N.
,
Kyriakou
,
V.
,
Garagounis
,
I.
,
Arenillas
,
A.
,
Menendez
,
J. A.
,
Marnellos
,
G. E.
, and
Konsolakis
,
M.
,
2014
, “
Effect of Carbon Type on the Performance of a Direct and Hybrid Carbon Solid Oxide Fuel Cell
,”
RCS Adv.
,
4
, pp.
18792
18800
.
30.
Jiang
,
C.
,
Ma
,
J.
,
Bonaccorso
,
A. D.
, and
Irvine
,
J. T. S.
,
2012
, “
Demonstration of High Power, Direct Conversion of Waste-Derived Carbon in a Hybrid Direct Carbon Fuel Cell
,”
Energy Environ. Sci.
,
5
(
5
), pp.
6973
6980
.
31.
Bonaccorso
,
A. D.
, and
Irvine
,
J. T. S.
,
2012
, “
Development of Tubular Hybrid Direct Carbon Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19337
19344
.
32.
Xu
,
X.
,
Zhou
,
W.
, and
Zhu
,
Z.
,
2014
, “
Stability of YSZ and SDC in Molten Carbonate Eutectics for Hybrid Direct Carbon Fuel Cells
,”
RSC Adv.
,
4
(
5
), pp.
2398
2403
.
33.
Lee
,
J.-Y.
,
Song
,
R.-H.
,
Lee
,
S.-B.
,
Lim
,
T.-H.
,
Park
,
S.-J.
,
Shul
,
Y. G.
, and
Lee
,
J.-W.
,
2014
, “
A Performance Study of Hybrid Direct Carbon Fuel Cells: Impact of Anode Microstructure
,”
Int. J. Hydrogen Energy
,
39
(
22
), pp.
11749
11755
.
34.
Predtechensky
,
M. R.
,
Varlamov
,
Y. D.
,
Ul'yankin
,
S. N.
, and
Dubov
,
Y. D.
,
2009
, “
Direct Conversion of Solid Hydrocarbons in a Molten Carbonate Fuel Cell
,”
Thermophys. Aeromech.
,
16
(
4
), pp.
601
610
.
35.
Li
,
C.
,
Shi
,
Y.
, and
Cai
,
N.
,
2011
, “
Effect of Contact Type Between Anode and Carbonaceous Fuels on Direct Carbon Fuel Cell Reaction Characteristics
,”
J. Power Sources
,
196
(
10
), pp.
4588
4593
.
36.
Chien
,
A. C.
, and
Chuang
,
S. S. C.
,
2011
, “
Effect of Gas Flow Rates and Boudouard Reactions on the Performance of Ni/YSZ Anode Supported Solid Oxide Fuel Cells With Solid Carbon Fuels
,”
J. Power Sources
,
196
(
10
), pp.
4719
4723
.
37.
Nabae
,
Y.
,
Pointon
,
K. D.
, and
Irvine
,
J. T. S.
,
2008
, “
Electrochemical Oxidation of Solid Carbon in Hybrid DCFC With Solid Oxide and Molten Carbonate Binary Electrolyte
,”
Energy Environ. Sci.
,
1
(
1
), pp.
148
155
.
You do not currently have access to this content.