Fuel cell technology continues to advance and offers to be a potentially promising solution to many energy needs. Of particular interest are manufacturing techniques to improve performance and decrease overall cost. For catalyst deposition on the membrane electrode assembly (MEA), there are a number of techniques that have been used in the past decades. This paper aims to review many of these main techniques that have been published to show the wide variety of catalyst deposition methods.

References

References
1.
Giddey
,
S.
,
Badwal
,
S. P. S.
,
Kulkarni
,
A.
, and
Munnings
,
C.
,
2012
, “
A Comprehensive Review of Direct Carbon Fuel Cell Technology
,”
Prog. Energy Combust. Sci.
,
38
(
3
), pp.
360
399
.
2.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
.
3.
Kamarudin
,
M. Z. F.
,
Kamarudin
,
S. K.
,
Masdar
,
M. S.
, and
Daud
,
W. R. W.
,
2012
, “
Review: Direct Ethanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
38
(
22
), pp.
9438
9453
.
4.
Kirubakaran
,
A.
,
Jain
,
S.
, and
Nema
,
R. K.
,
2009
, “
A Review on Fuel Cell Technologies and Power Electronic Interface
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2430
2440
.
5.
Wing
,
J.
,
2013
, “
Why Fuel Cells for Telecoms Backup Is a Good Call
,”
Fuel Cell Today
, June (epub).
6.
Kim
,
J. W.
,
2013
, “
Recent Achievements in Hydrogen and Fuel Cells in Korea
,”
International Hydrogen Energy Development Forum
, Fukuoka, Japan, Jan. 28–31.
7.
Pacific Northwest National Laboratory
,
2012
, “
Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program
,”
U.S. Department of Energy
, Pacific Northwest National Laboratory, Richland, WA.
8.
James
,
B. D.
, and
Spisak
,
A. B.
,
2012
, “
Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2012 Update
,” Office of Energy Efficiency & Renewable Energy,
U.S. Department of Energy
, Washington, DC.
9.
U.S. Dept of Energy and National Institute of Standards
,
2005
, “
Manufacturing for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell Systems for Transportation Applications
,” Manufacturing R&D Workshop, Washington, DC, July 13–14.
10.
Mehta
,
V.
, and
Cooper
,
J. S.
,
2003
, “
Review and Analysis of PEM Fuel Cell Design and Manufacturing
,”
J. Power Sources
,
114
(
1
), pp.
32
53
.
11.
Litster
,
S.
, and
McLean
,
G.
,
2004
, “
PEM Fuel Cell Electrodes
,”
J. Power Sources
,
130
(
1–2
), pp.
61
76
.
12.
Wee
,
J.-H.
,
Lee
,
K.-Y.
, and
Kim
,
S. H.
,
2007
, “
Fabrication Methods for Low-Pt-Loading Electrocatalysts in Proton Exchange Membrane Fuel Cell Systems
,”
J. Power Sources
,
165
(
2
), pp.
667
677
.
13.
Srinivasan
,
S.
,
1988
, “
Advances in Solid Polymer Electrolyte Fuel Cell Technology With Low Platinum Loading Electrodes
,”
J. Power Sources
,
22
(
3
), pp.
359
375
.
14.
Wilson
,
M. S.
,
1992
, “
High Performance Catalyzed Membranes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
139
(
2
), p.
L28
.
15.
Song
,
S. Q.
,
Liang
,
Z. X.
,
Zhou
,
W. J.
,
Sun
,
G. Q.
,
Xin
,
Q.
,
Stergiopoulos
,
V.
, and
Tsiakaras
,
P.
,
2005
, “
Direct Methanol Fuel Cells: The Effect of Electrode Fabrication Procedure on MEAs Structural Properties and Cell Performance
,”
J. Power Sources
,
145
(
2
), pp.
495
501
.
16.
Tang
,
H.
,
Wang
,
S.
,
Pan
,
M.
,
Jiang
,
S. P.
, and
Ruan
,
Y.
,
2007
, “
Performance of Direct Methanol Fuel Cells Prepared by Hot-Pressed MEA and Catalyst-Coated Membrane (CCM)
,”
Electrochim. Acta
,
52
(
11
), pp.
3714
3718
.
17.
Zhang
,
J.
,
Yin
,
G.
,
Wang
,
Z.
, and
Shao
,
Y.
,
2006
, “
Effects of MEA Preparation on the Performance of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
160
(
2
), pp.
1035
1040
.
18.
Hsu
,
C.
,
2003
, “
An Innovative Process for PEMFC Electrodes Using the Expansion of Nafion Film
,”
J. Power Sources
,
115
(
2
), pp.
268
273
.
19.
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1992
, “
Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes
,”
J. Appl. Electrochem.
,
22
(
1
), pp.
1
7
.
20.
Wilson
,
M. S.
,
Valerio
,
J. A.
, and
Gottesfeld
,
S.
,
1995
, “
Low Platinum Loading Electrodes for Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers
,”
Electrochim. Acta
,
40
(
3
), pp.
355
363
.
21.
Cho
,
J. H.
,
Kim
,
J. M.
,
Prabhuram
,
J.
,
Hwang
,
S. Y.
,
Ahn
,
D. J.
,
Ha
,
H. Y.
, and
Kim
,
S.-K.
,
2009
, “
Fabrication and Evaluation of Membrane Electrode Assemblies by Low-Temperature Decal Methods for Direct Methanol Fuel Cells
,”
J. Power Sources
,
187
(
2
), pp.
378
386
.
22.
Kim
,
K.-H.
,
Lee
,
K.-Y.
,
Kim
,
H.-J.
,
Cho
,
E.
,
Lee
,
S.-Y.
,
Lim
,
T.-H.
,
Yoon
,
S. P.
,
Hwang
,
I. C.
, and
Jang
,
J. H.
,
2010
, “
The Effects of Nafion® Ionomer Content in PEMFC MEAs Prepared by a Catalyst-Coated Membrane (CCM) Spraying Method
,”
Int. J. Hydrogen Energy
,
35
(
5
), pp.
2119
2126
.
23.
Song
,
S.
,
Wang
,
G.
,
Zhou
,
W.
,
Zhao
,
X.
,
Sun
,
G.
,
Xin
,
Q.
,
Kontou
,
S.
, and
Tsiakaras
,
P.
,
2005
, “
The Effect of the MEA Preparation Procedure on Both Ethanol Crossover and DEFC Performance
,”
J. Power Sources
,
140
(
1
), pp.
103
110
.
24.
Kim
,
C. S.
,
Chun
,
Y. G.
,
Peck
,
D. H.
, and
Shin
,
D. R.
,
1998
, “
A Novel Process to Fabricate Membrane Electrode Assemblies for Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
23
(
11
), pp.
1045
1048
.
25.
Chun
,
Y.-G.
,
Kim
,
C.-S.
,
Peck
,
D.-H.
, and
Shin
,
D.-R.
,
1998
, “
Performance of a Polymer Electrolyte Membrane Fuel Cell With Thin Film Catalyst Electrodes
,”
J. Power Sources
,
71
(
1–2
), pp.
174
178
.
26.
Ihm
,
J. W.
,
Ryu
,
H.
,
Bae
,
J. S.
,
Choo
,
W. K.
, and
Choi
,
D. K.
,
2004
, “
High Performance of Electrode With Low Pt Loading Prepared by Simplified Direct Screen Printing Process in PEM Fuel Cells
,”
J. Mater. Sci.
,
39
(
14
), pp.
4647
4649
.
27.
Rajalakshmi
,
N.
, and
Dhathathreyan
,
K. S.
,
2007
, “
Catalyst Layer in PEMFC Electrodes—Fabrication, Characterisation and Analysis
,”
Chem. Eng. J.
,
129
(
1–3
), pp.
31
40
.
28.
Bolwin
,
K.
,
Giilzow
,
E.
,
Bevers
,
D.
, and
Schnumberger
,
W.
,
1995
, “
Preparation of Porous Electrodes and Laminated Electrode–Membrane Structures for Polymer Electrolyte Fuel Cells (PEFC)
,”
Solid State Ionics
,
2738
(
95
), pp.
324
330
.
29.
Bevers
,
D.
,
Wagner
,
N.
, and
Von Bradke
,
M.
,
1998
, “
Innovative Production Procedure for Low Cost PEFC Electrodes and Electrode/Membrane Structures
,”
Int. J. Hydrogen Energy
,
23
(
1
), pp.
57
63
.
30.
Gülzow
,
E.
,
Schulze
,
M.
,
Wagner
,
N.
,
Kaz
,
T.
,
Reissner
,
R.
,
Steinhilber
,
G.
, and
Schneider
,
A.
,
2000
, “
Dry Layer Preparation and Characterisation of Polymer Electrolyte Fuel Cell Components
,”
J. Power Sources
,
86
(
1–2
), pp.
352
362
.
31.
Gülzow
,
E.
, and
Kaz
,
T.
,
2002
, “
New Results of PEFC Electrodes Produced by the DLR Dry Preparation Technique
,”
J. Power Sources
,
106
, pp.
122
125
.
32.
Saab
,
A. P.
,
Garzon
,
F. H.
, and
Zawodzinski
,
T. A.
,
2002
, “
Determination of Ionic and Electronic Resistivities in Carbon/Polyelectrolyte Fuel-Cell Composite Electrodes
,”
J. Electrochem. Soc.
,
149
(
12
), p.
A1541
.
33.
Bender
,
G.
,
Zawodzinski
,
T. A.
, and
Saab
,
A. P.
,
2003
, “
Fabrication of High Precision PEFC Membrane Electrode Assemblies
,”
J. Power Sources
,
124
(
1
), pp.
114
117
.
34.
Towne
,
S.
,
Viswanathan
,
V.
,
Holbery
,
J.
, and
Rieke
,
P.
,
2007
, “
Fabrication of Polymer Electrolyte Membrane Fuel Cell MEAs Utilizing Inkjet Print Technology
,”
J. Power Sources
,
171
(
2
), pp.
575
584
.
35.
Taylor
,
A. D.
,
Kim
,
E. Y.
,
Humes
,
V. P.
,
Kizuka
,
J.
, and
Thompson
,
L. T.
,
2007
, “
Inkjet Printing of Carbon Supported Platinum 3-D Catalyst Layers for Use in Fuel Cells
,”
J. Power Sources
,
171
(
1
), pp.
101
106
.
36.
Saha
,
M. S.
,
Paul
,
D. K.
,
Malevich
,
D.
,
Peppley
,
B. A.
, and
Karan
,
K.
,
2009
, “
Preparation of Ultra-Thin Catalyst Layers by Piezo-Electric Printer for PEMFCs Applications
,”
ECS Trans.
,
25
(
1
), pp.
2049
2059
.
37.
Malevich
,
D.
,
Saha
,
M. S.
,
Halliop
,
E.
,
Peppley
,
B. A.
,
Pharoah
,
J. G.
, and
Karan
,
K.
,
2012
, “
Performance Characteristics of PEFCs With Patterned Electrodes Prepared by Piezo-Electric Printing
,”
ECS Trans.
,
50
(
2
), pp.
423
427
.
38.
Yazdanpour
,
M.
,
Esmaeilifar
,
A.
, and
Rowshanzamir
,
S.
,
2012
, “
Effects of Hot Pressing Conditions on the Performance of Nafion Membranes Coated by Ink-Jet Printing of Pt/MWCNTs Electrocatalyst for PEMFCs
,”
Int. J. Hydrogen Energy
,
37
(
15
), pp.
11290
11298
.
39.
Wu
,
S. D.
,
Chou
,
C. P.
,
Peng
,
R. G.
,
Lee
,
C. H.
, and
Wang
,
Y. Z.
,
2009
, “
A Novel Scrape-Applied Method for the Manufacture of the Membrane–Electrode Assembly of the Fuel-Cell System
,”
Acta Mech. Sin.
,
25
(
6
), pp.
831
837
.
40.
Ding
,
X.
,
Didari
,
S.
,
Fuller
,
T. F.
, and
Harris
,
T. A. L.
,
2012
, “
Membrane Electrode Assembly Fabrication Process for Directly Coating Catalyzed Gas Diffusion Layers
,”
J. Electrochem. Soc.
,
159
(
6
), p.
B746
.
41.
Bockris
,
J. O.
,
1969
, “
Effect of a Finite-Contact-Angle Meniscus on Kinetics in Porous Electrode Systems
,”
J. Chem. Phys.
,
50
(
3
), p.
1307
.
42.
Weber
,
M. F.
,
Mamiche-Afara
,
S.
,
Dignam
,
M. J.
,
Pataki
,
L.
, and
Venter
,
R. D.
,
1987
, “
Sputtered Fuel Cell Electrodes
,”
J. Electrochem. Soc.
,
86
, pp.
1416
1419
.
43.
Ticiauelli
,
E. A.
,
Derouin
,
C. R.
, and
Srinivasan
,
S.
,
1988
, “
Localization of Platinum in Low Catalyst Loading Electrodes to Attain High Power Densities in SPE Fuel Cells
,”
J. Electroanal. Chem. Interfac. Electrochem.
,
251
(
2
), pp.
275
295
.
44.
Mukerjee
,
S.
,
Srinivasan
,
S.
, and
Appleby
,
A. J.
,
1993
, “
Effect of Sputtered Film of Platinum on Low Platinum Loading Electrodes on Electrode Kinetics of Oxygen Reduction in Proton Exchange Membrane Fuel Cells
,”
Electrochim. Acta
,
38
(
12
), pp.
1661
1669
.
45.
Hirano
,
S.
,
Kim
,
J.
, and
Srinivasan
,
S.
,
1997
, “
High Performance Proton Exchange Membrane Fuel Cells With Sputter-Deposited Pt Layer Electrodes
,”
Electrochim. Acta
,
42
(
96
), pp.
1587
1593
.
46.
Cha
,
S. Y.
, and
Lee
,
W. M.
,
1999
, “
Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface
,”
J. Electrochem. Soc.
,
146
(
11
), pp.
4055
4060
.
47.
Haug
,
A. T.
,
White
,
R. E.
,
Weidner
,
J. W.
,
Huang
,
W.
,
Shi
,
S.
,
Stoner
,
T.
, and
Rana
,
N.
,
2002
, “
Increasing Proton Exchange Membrane Fuel Cell Catalyst Effectiveness Through Sputter Deposition
,”
J. Electrochem. Soc.
,
149
(
3
), p.
A280
.
48.
Haug
,
A. T.
,
White
,
R. E.
,
Weidner
,
J. W.
,
Huang
,
W.
,
Shi
,
S.
,
Rana
,
N.
,
Grunow
,
S.
,
Stoner
,
T. C.
, and
Kaloyeros
,
A. E.
,
2002
, “
Using Sputter Deposition to Increase CO Tolerance in a Proton-Exchange Membrane Fuel Cell
,”
J. Electrochem. Soc.
,
149
(
7
), p.
A868
.
49.
O'Hayre
,
R.
,
Lee
,
S.-J.
,
Cha
,
S.-W.
, and
Prinz
,
F.
,
2002
, “
A Sharp Peak in the Performance of Sputtered Platinum Fuel Cells at Ultra-Low Platinum Loading
,”
J. Power Sources
,
109
(
2
), pp.
483
493
.
50.
Brault
,
P.
,
Caillard
,
A.
,
Thomann
,
A. L.
,
Mathias
,
J.
,
Charles
,
C.
,
Boswell
,
R. W.
,
Escribano
,
S.
,
Durand
,
J.
, and
Sauvage
,
T.
,
2004
, “
Plasma Sputtering Deposition of Platinum Into Porous Fuel Cell Electrodes
,”
J. Phys. D. Appl. Phys.
,
37
(
24
), pp.
3419
3423
.
51.
Gruber
,
D.
,
Ponath
,
N.
,
Müller
,
J.
, and
Lindstaedt
,
F.
,
2005
, “
Sputter-Deposited Ultra-Low Catalyst Loadings for PEM Fuel Cells
,”
J. Power Sources
,
150
, pp.
67
72
.
52.
Gruber
,
D.
, and
Müller
,
J.
,
2007
, “
Enhancing PEM Fuel Cell Performance by Introducing Additional Thin Layers to Sputter-Deposited Pt Catalysts
,”
J. Power Sources
,
171
(
2
), pp.
294
301
.
53.
Caillard
,
A.
,
Brault
,
P.
,
Mathias
,
J.
,
Charles
,
C.
,
Boswell
,
R. W.
, and
Sauvage
,
T.
,
2005
, “
Deposition and Diffusion of Platinum Nanoparticles in Porous Carbon Assisted by Plasma Sputtering
,”
Surf. Coat. Technol.
,
200
, pp.
391
394
.
54.
Huang
,
K.-L.
,
Lai
,
Y.-C.
, and
Tsai
,
C.-H.
,
2006
, “
Effects of Sputtering Parameters on the Performance of Electrodes Fabricated for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
156
(
2
), pp.
224
231
.
55.
Rabat
,
H.
, and
Brault
,
P.
,
2008
, “
Plasma Sputtering Deposition of PEMFC Porous Carbon Platinum Electrodes
,”
Fuel Cells
,
8
(
2
), pp.
81
86
.
56.
Mougenot
,
M.
,
Caillard
,
A.
,
Brault
,
P.
,
Baranton
,
S.
, and
Coutanceau
,
C.
,
2011
, “
High Performance Plasma Sputtered PdPt Fuel Cell Electrodes With Ultra Low Loading
,”
Int. J. Hydrogen Energy
,
36
(
14
), pp.
8429
8434
.
57.
Wan
,
C.-H.
,
Lin
,
M.-T.
,
Zhuang
,
Q.-H.
, and
Lin
,
C.-H.
,
2006
, “
Preparation and Performance of a Novel MEA With Multi Catalyst Layer Structure for PEFC by Magnetron Sputter Deposition Technique
,”
Surf. Coat. Technol.
,
201
, pp.
214
222
.
58.
Yoo
,
S. J.
,
Cho
,
Y.-H.
,
Park
,
H.-S.
,
Lee
,
J. K.
, and
Sung
,
Y.-E.
,
2008
, “
High Utilization of Pt Nanocatalysts Fabricated Using a High-Pressure Sputtering Technique
,”
J. Power Sources
,
178
(
2
), pp.
547
553
.
59.
Kim
,
H.-T.
,
Lee
,
J.-K.
, and
Kim
,
J.
,
2008
, “
Platinum-Sputtered Electrode Based on Blend of Carbon Nanotubes and Carbon Black for Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
180
(
1
), pp.
191
194
.
60.
Cavarroc
,
M.
,
Ennadjaoui
,
A.
,
Mougenot
,
M.
,
Brault
,
P.
,
Escalier
,
R.
,
Tessier
,
Y.
,
Durand
,
J.
,
Roualdès
,
S.
,
Sauvage
,
T.
, and
Coutanceau
,
C.
,
2009
, “
Performance of Plasma Sputtered Fuel Cell Electrodes With Ultra-Low Pt Loadings
,”
Electrochem. Commun.
,
11
(
4
), pp.
859
861
.
61.
Natarajan
,
S. K.
, and
Hamelin
,
J.
,
2010
, “
High-Performance Anode for Polymer Electrolyte Membrane Fuel Cells by Multiple-Layer Pt Sputter Deposition
,”
J. Power Sources
,
195
(
22
), pp.
7574
7577
.
62.
Nakakubo
,
T.
,
Shibata
,
M.
, and
Yasuda
,
K.
,
2005
, “
Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells Prepared by Sputter Deposition in Air and Transfer Method
,”
J. Electrochem. Soc.
,
152
(
12
), p.
A2316
.
63.
Caillard
,
A.
,
Charles
,
C.
,
Boswell
,
R.
, and
Brault
,
P.
,
2007
, “
Integrated Plasma Synthesis of Efficient Catalytic Nanostructures for Fuel Cell Electrodes
,”
Nanotechnology
,
18
(
30
), p.
305603
.
64.
Caillard
,
A.
,
Charles
,
C.
,
Boswell
,
R. W.
, and
Brault
,
P.
,
2008
, “
Synthesis of Carbon Nanofibers and Microsystems by Combining Low-Pressure Helicon Plasma Techniques
,”
IEEE Trans. Plasma Sci.
,
36
(
4
), pp.
882
883
.
65.
Caillard
,
A.
,
Charles
,
C.
,
Ramdutt
,
D.
,
Boswell
,
R.
, and
Brault
,
P.
,
2009
, “
Effect of Nafion and Platinum Content in a Catalyst Layer Processed in a Radio Frequency Helicon Plasma System
,”
J. Phys. D. Appl. Phys.
,
42
(
4
), p.
045207
.
66.
Wolf
,
G. K.
, and
Zucholl
,
K.
,
1983
, “
Ion Implanted Catalysts for Fuel Cell Reactions
,”
Nucl. Instrum. Methods Physics Res.
,
210
, pp.
835
840
.
67.
Ramaswamy
,
N.
,
Arruda
,
T. M.
,
Wen
,
W.
,
Hakim
,
N.
,
Saha
,
M.
,
Gullá
,
A.
, and
Mukerjee
,
S.
,
2009
, “
Enhanced Activity and Interfacial Durability Study of Ultra Low Pt Based Electrocatalysts Prepared by Ion Beam Assisted Deposition (IBAD) Method
,”
Electrochim. Acta
,
54
(
26
), pp.
6756
6766
.
68.
Gullá
,
A. F.
,
Saha
,
M. S.
,
Allen
,
R. J.
, and
Mukerjee
,
S.
,
2005
, “
Dual Ion-Beam-Assisted Deposition as a Method to Obtain Low Loading-High Performance Electrodes for PEMFCs
,”
Electrochem. Solid State Lett.
,
8
(
10
), p.
A504
.
69.
Gullá
,
A. F.
,
Saha
,
M. S.
,
Allen
,
R. J.
, and
Mukerjee
,
S.
,
2006
, “
Toward Improving the Performance of PEM Fuel Cell by Using Mix Metal Electrodes Prepared by Dual IBAD
,”
J. Electrochem. Soc.
,
153
(
2
), p.
A366
.
70.
Saha
,
M. S.
,
Gullá
,
A. F.
,
Allen
,
R. J.
, and
Mukerjee
,
S.
,
2006
, “
High Performance Polymer Electrolyte Fuel Cells With Ultra-Low Pt Loading Electrodes Prepared by Dual Ion-Beam Assisted Deposition
,”
Electrochim. Acta
,
51
(
22
), pp.
4680
4692
.
71.
Cunningham
,
N.
,
Irissou
,
E.
,
Lefèvre
,
M.
,
Denis
,
M.-C.
,
Guay
,
D.
, and
Dodelet
,
J.-P.
,
2003
, “
PEMFC Anode With Very Low Pt Loadings Using Pulsed Laser Deposition
,”
Electrochem. Solid State Lett.
,
6
(
7
), p.
A125
.
72.
Feltham
,
A. M.
, and
Spiro
,
M.
,
1971
, “
Platinized Platinum Electrodes
,”
Chem. Rev.
,
71
(
2
), pp.
178
193
.
73.
Itaya
,
K.
,
Takahashi
,
H.
, and
Uchida
,
I.
,
1986
, “
Electrodepostion of Pt Ultramicroparticles in Nafion Films on Glassy Carbon Electrodes
,”
J. Electroanal. Chem.
,
208
(
2
), pp.
373
382
.
74.
Taylor
,
E. J.
,
Anderson
,
E. B.
, and
Vilambi
,
N. R. K.
,
1992
, “
Preparation of High-Platinum-Utilization Gas Diffusion Electrodes for Proton-Exchange-Membrane Fuel Cells
,”
Electrochem. Soc. Lett
.,
139
(
5
), pp.
45
46
.
75.
Verbrugge
,
M. W.
,
1994
, “
Selective Electrodeposition of Catalyst Within Membrane-Electrode Structures
,”
J. Electrochem. Soc.
,
141
(
1
), p.
46
.
76.
Thompson
,
S. D.
,
Jordan
,
L. R.
, and
Forsyth
,
M.
,
2001
, “
Platinum Electrodeposition for Polymer Electrolyte Membrane Fuel Cells
,”
Electrochim. Acta
,
46
(
10–11
), pp.
1657
1663
.
77.
Choi
,
K. H.
,
Kim
,
H. S.
, and
Lee
,
T. H.
,
1998
, “
Electrode Fabrication for Proton Exchange Membrane Fuel Cells by Pulse Electrodeposition
,”
J. Power Sources
,
75
(
2
), pp.
230
235
.
78.
Kim
,
H.
, and
Popov
,
B. N.
,
2004
, “
Development of Novel Method for Preparation of PEMFC Electrodes
,”
Electrochem. Solid State Lett.
,
7
(
4
), p.
A71
.
79.
Kim
,
H.
,
Subramanian
,
N. P.
, and
Popov
,
B. N.
,
2004
, “
Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition
,”
J. Power Sources
,
138
(
1–2
), pp.
14
24
.
80.
Lee
,
J.
,
Seo
,
J.
,
Han
,
K.
, and
Kim
,
H.
,
2006
, “
Preparation of Low Pt Loading Electrodes on Nafion (Na+)-Bonded Carbon Layer With Galvanostatic Pulses for PEMFC Application
,”
J. Power Sources
,
163
(
1
), pp.
349
356
.
81.
Ayyadurai
,
S. M.
,
Choi
,
Y.-S.
,
Ganesan
,
P.
,
Kumaraguru
,
S. P.
, and
Popov
,
B. N.
,
2007
, “
Novel PEMFC Cathodes Prepared by Pulse Deposition
,”
J. Electrochem. Soc.
,
154
(
10
), p.
B1063
.
82.
Rajalakshmi
,
N.
, and
Dhathathreyan
,
K.
,
2008
, “
Nanostructured Platinum Catalyst Layer Prepared by Pulsed Electrodeposition for Use in PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
33
(
20
), pp.
5672
5677
.
83.
Martín
,
A. J.
,
Chaparro
,
A. M.
,
Gallardo
,
B.
,
Folgado
,
M. A.
, and
Daza
,
L.
,
2009
, “
Characterization and Single Cell Testing of Pt/C Electrodes Prepared by Electrodeposition
,”
J. Power Sources
,
192
(
1
), pp.
14
20
.
84.
Wei
,
Z. D.
,
Chen
,
S. G.
,
Liu
,
Y.
,
Sun
,
C. X.
,
Shao
,
Z. G.
, and
Shen
,
P. K.
,
2007
, “
Electrodepositing Pt by Modulated Pulse Current on a Nafion-Bonded Carbon Substrate as an Electrode for PEMFC
,”
J. Phys. Chem. C
,
111
(
42
), pp.
15456
15463
.
85.
Pollet
,
B. G.
,
2008
, “
The Use of Ultrasound (20 kHz) as a Novel Method for Preparing Proton Exchange Membrane Fuel Cell Electrodes
,”
ECS Trans.
,
16
(
2
), pp.
2031
2041
.
86.
Pollet
,
B. G.
,
2009
, “
A Novel Method for Preparing PEMFC Electrodes by the Ultrasonic and Sonoelectrochemical Techniques
,”
Electrochem. Commun.
,
11
(
7
), pp.
1445
1448
.
87.
Morikawa
,
H.
,
Tsuihiji
,
N.
,
Mitsui
,
T.
, and
Kanamura
,
K.
,
2004
, “
Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process
,”
J. Electrochem. Soc.
,
151
(
10
), p.
A1733
.
88.
Munakata
,
H.
,
Ishida
,
T.
, and
Kanamura
,
K.
,
2006
, “
Preparation of Nano-Structured Catalyst Layers on Nafion® Membrane by Electrophoretic Deposition
,”
ECS Trans.
,
3
(
1
), pp.
329
335
.
89.
Munakata
,
H.
,
Ishida
,
T.
, and
Kanamura
,
K.
,
2007
, “
Electrophoretic Deposition for Nanostructural Design of Catalyst Layers on Nafion Membrane
,”
J. Electrochem. Soc.
,
154
(
12
), p.
B1368
.
90.
Yu
,
Y.-T.
,
Song
,
J.-C.
,
Kim
,
J.-H.
,
Kim
,
Y.-S.
, and
Lee
,
H.-G.
,
2011
, “
Nano-Architecture Platinum Catalyst Layer Prepared by Electrophoresis Deposition for PEM Fuel Cells
,”
J. Solid State Electrochem.
,
16
(
4
), pp.
1377
1381
.
91.
Adilbish
,
G.
,
Kim
,
J.-W.
,
Lee
,
H.-G.
, and
Yu
,
Y.-T.
,
2013
, “
Effect of the Deposition Time on the Electrocatalytic Activity of Pt/C Catalyst Electrodes Prepared by Pulsed Electrophoresis Deposition Method
,”
Int. J. Hydrogen Energy
,
38
(
9
), pp.
3606
3613
.
92.
Felix
,
C.
,
Jao
,
T.-C.
,
Pasupathi
,
S.
, and
Pollet
,
B. G.
,
2013
, “
Optimisation of Electrophoretic Deposition Parameters for Gas Diffusion Electrodes in High Temperature Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
243
, pp.
40
47
.
93.
Baturina
,
O. A.
, and
Wnek
,
G. E.
,
2005
, “
Characterization of Proton Exchange Membrane Fuel Cells With Catalyst Layers Obtained by Electrospraying
,”
Electrochem. Solid-State Lett.
,
8
(
6
), p.
A267
.
94.
Benítez
,
R.
,
Soler
,
J.
, and
Daza
,
L.
,
2005
, “
Novel Method for Preparation of PEMFC Electrodes by the Electrospray Technique
,”
J. Power Sources
,
151
, pp.
108
113
.
95.
Chaparro
,
A. M.
,
Benítez
,
R.
,
Gubler
,
L.
,
Scherer
,
G. G.
, and
Daza
,
L.
,
2007
, “
Study of Membrane Electrode Assemblies for PEMFC, With Cathodes Prepared by the Electrospray Method
,”
J. Power Sources
,
169
(
1
), pp.
77
84
.
96.
Martin
,
S.
,
Garcia-Ybarra
,
P. L.
, and
Castillo
,
J. L.
,
2010
, “
Electrospray Deposition of Catalyst Layers With Ultra-Low Pt Loadings for PEM Fuel Cells Cathodes
,”
J. Power Sources
,
195
(
9
), pp.
2443
2449
.
97.
Martin
,
S.
,
Garcia-Ybarra
,
P. L.
, and
Castillo
,
J. L.
,
2010
, “
High Platinum Utilization in Ultra-Low Pt Loaded PEM Fuel Cell Cathodes Prepared by Electrospraying
,”
Int. J. Hydrogen Energy
,
35
(
19
), pp.
10446
10451
.
98.
Martin
,
S.
,
Martinez-Vazquez
,
B.
,
Garcia-Ybarra
,
P. L.
, and
Castillo
,
J. L.
,
2013
, “
Peak Utilization of Catalyst With Ultra-Low Pt Loaded PEM Fuel Cell Electrodes Prepared by the Electrospray Method
,”
J. Power Sources
,
229
, pp.
179
184
.
99.
Zhang
,
W.
,
Brodt
,
M. W.
, and
Pintauro
,
P. N.
,
2011
, “
Nanofiber Cathodes for Low and High Humidity Hydrogen Fuel Cell Operation
,”
ECS Trans.
,
41
(
1
), pp.
891
899
.
100.
Zhang
,
W.
, and
Pintauro
,
P. N.
,
2011
, “
High-Performance Nanofiber Fuel Cell Electrodes
,”
ChemSusChem
,
4
(
12
), pp.
1753
1757
.
101.
Sightler
,
J.
,
Mcpherson
,
E.
,
Rigdon
,
W.
, and
Huang
,
X.
,
2012
, “
Application of Electrospinning Technique in the Fabrication of Catalyst Layer of Membrane Electrode Assemblies
,”
ECS Trans.
,
50
(
2
), pp.
1445
1451
.
102.
Brodt
,
M.
,
Wycisk
,
R.
, and
Pintauro
,
P. N.
,
2013
, “
Nanofiber Electrodes With Low Platinum Loading for High Power Hydrogen/Air PEM Fuel Cells
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
F744
F749
.
103.
Pollet
,
B. G.
,
2010
, “
The Use of Ultrasound for the Fabrication of Fuel Cell Materials
,”
Int. J. Hydrogen Energy
,
35
(
21
), pp.
11986
12004
.
104.
Millington
,
B.
,
Whipple
,
V.
, and
Pollet
,
B. G.
,
2011
, “
A Novel Method for Preparing Proton Exchange Membrane Fuel Cell Electrodes by the Ultrasonic-Spray Technique
,”
J. Power Sources
,
196
(
20
), pp.
8500
8508
.
105.
Huang
,
X.
,
Rigdon
,
W. A.
,
Neutzler
,
J.
,
Larrabee
,
D.
, and
Sightler
,
J.
,
2011
, “
High Performance Membrane Electrode Assembly Fabricated by Ultrasonic Spray Technique
,”
ECS Trans.
,
41
(
1
), pp.
901
907
.
106.
Huang
,
T.-H.
,
Shen
,
H.-L.
,
Jao
,
T.-C.
,
Weng
,
F.-B.
, and
Su
,
A.
,
2012
, “
Ultra-Low Pt Loading for Proton Exchange Membrane Fuel Cells by Catalyst Coating Technique With Ultrasonic Spray Coating Machine
,”
Int. J. Hydrogen Energy
,
37
(
18
), pp.
13872
13879
.
107.
Middelman
,
E.
,
2002
, “
Improved PEM Fuel Cell Electrodes by Controlled Self-Assembly
,”
Fuel Cells Bull.
,
2002
(
11
), pp.
9
12
.
108.
Kannan
,
A. M.
,
Veedu
,
V. P.
,
Munukutla
,
L.
, and
Ghasemi-Nejhad
,
M. N.
,
2007
, “
Nanostructured Gas Diffusion and Catalyst Layers for Proton Exchange Membrane Fuel Cells
,”
Electrochem. Solid-State Lett.
,
10
(
3
), p.
B47
.
109.
Michel
,
M.
,
Taylor
,
A.
,
Sekol
,
R.
,
Podsiadlo
,
P.
,
Ho
,
P.
,
Kotov
,
N.
, and
Thompson
,
L.
,
2007
, “
High-Performance Nanostructured Membrane Electrode Assemblies for Fuel Cells Made by Layer-By-Layer Assembly of Carbon Nanocolloids
,”
Adv. Mater.
,
19
(
22
), pp.
3859
3864
.
110.
Wang
,
L.
,
Guo
,
S.
,
Zhai
,
J.
, and
Dong
,
S.
,
2008
, “
Facile Synthesis of Platinum Nanoelectrocatalyst With Urchinlike Morphology
,”
J. Phys. Chem. C
,
112
(
35
), pp.
13372
13377
.
111.
Hackendorn
,
R. A.
, and
Virkar
,
A. V.
,
2013
, “
Synthesis of Platinum Nanoclusters and Electrochemical Investigation of Their Stability
,”
J. Power Sources
,
240
, pp.
618
629
.
112.
Lee
,
E. P.
,
Peng
,
Z.
,
Cate
,
D. M.
,
Yang
,
H.
,
Campbell
,
C. T.
, and
Xia
,
Y.
,
2007
, “
Growing Pt Nanowires as a Densely Packed Array on Metal Gauze
,”
J. Am. Chem. Soc.
,
129
(
35
), pp.
10634
10635
.
113.
Sun
,
S.
,
Jaouen
,
F.
, and
Dodelet
,
J.-P.
,
2008
, “
Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Electrocatalysts in PEM Fuel Cells
,”
Adv. Mater.
,
20
(
20
), pp.
3900
3904
.
114.
Du
,
S.
,
2010
, “
A Facile Route for Polymer Electrolyte Membrane Fuel Cell Electrodes With In Situ Grown Pt Nanowires
,”
J. Power Sources
,
195
(
1
), pp.
289
292
.
115.
Sun
,
S. H.
,
Yang
,
D. Q.
,
Villers
,
D.
,
Zhang
,
G. X.
,
Sacher
,
E.
, and
Dodelet
,
J. P.
,
2008
, “
Template- and Surfactant-Free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers From Single-Crystal Nanowires
,”
Adv. Mater.
,
20
(
3
), pp.
571
574
.
116.
Chen
,
J.
,
Lim
,
B.
,
Lee
,
E. P.
, and
Xia
,
Y.
,
2009
, “
Shape-Controlled Synthesis of Platinum Nanocrystals for Catalytic and Electrocatalytic Applications
,”
Nano Today
,
4
(
1
), pp.
81
95
.
You do not currently have access to this content.