Proton exchange membranes (PEMs) in operating fuel cells are subjected to varying thermal and hygral loads while under mechanical constraint imposed within the compressed stack. Swelling during hygrothermal cycles can result in residual in-plane tensile stresses in the membrane and lead to mechanical degradation or failure through thinning or pinhole development. Numerical models can predict the stresses resulting from applied loads based on material characteristics, thus aiding in the development of more durable membrane materials. In this work, a nonlinear viscoelastic stress model based on the Schapery constitutive formulation is used with a viscoplastic term to describe the response of a novel membrane material comprised of a blend of perfluorocyclobutane (PFCB) ionomer and poly(vinylidene fluoride) (PVDF). Uniaxial creep and recovery experiments characterize the time-dependent linear viscoelastic compliance and the fitting parameters for the nonlinear viscoelastic viscoplastic model. The stress model is implemented in a commercial finite element code, abaqus®, to predict the response of a membrane subjected to mechanical loads. The stress model is validated by comparing model predictions to the experimental responses of membranes subjected to multiple-step creep, stress relaxation, and force ramp loads in uniaxial tension.

References

References
1.
DOE
,
2007
,
Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan
,
U.S. Department of Energy
,
Washington, DC
, pp.
3.4-1
3.4-42
.
2.
Mathias
,
M. F.
,
Makharia
,
R.
,
Gasteiger
,
H. A.
,
Conley
,
J. J.
,
Fuller
,
T. J.
,
Gittleman
,
C. J.
,
Kocha
,
S. S.
,
Miller
,
D. P.
,
Mittelsteadt
,
C. K.
,
Tao
,
X.
,
Yan
,
S. G.
, and
Yu
,
P. T.
,
2005
, “
Two Fuel Cell Cars in Every Garage?
,”
Electrochem. Soc. Interface
,
14
(
3
), pp.
24
35
.
3.
de Bruijn
,
F. A.
,
Dam
,
V. A. T.
, and
Janssen
,
G. J. M.
,
2008
, “
Review: Durability and Degradation Issues of PEM Fuel Cell Components
,”
Fuel Cells
,
8
(
1
), pp.
3
22
.
4.
Dillard
,
D.
,
Li
,
Y.
,
Grohs
,
J.
,
Case
,
S.
,
Ellis
,
M.
,
Lai
,
Y.-H.
,
Budinski
,
M.
, and
Gittleman
,
C.
,
2009
, “
On the Use of Pressure-Loaded Blister Tests to Characterize the Strength and Durability of Proton Exchange Membranes
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
3
), p.
031014
.
5.
Mauritz
,
K. A.
, and
Moore
,
R. B.
,
2004
, “
State of Understanding of Nafion
,”
Chem. Rev.
,
104
(
10
), pp.
4535
4586
.
6.
Jiang
,
R.
,
Fuller
,
T.
,
Brawn
,
S.
, and
Gittleman
,
C.
,
2013
, “
Perfluorocyclobutane and Poly(Vinylidene Fluoride) Blend Membranes for Fuel Cells
,”
Electrochim. Acta
,
110
, pp.
306
315
.
7.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.
8.
Riku
,
I.
, and
Mimura
,
K.
,
2010
, “
Computational Characterization on Mechanical Behavior of Polymer Electrolyte Membrane Based on Nonaffine Molecular Chain Network Model
,”
Int. J. Mech. Sci.
,
52
(
2
), pp.
287
294
.
9.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.
10.
Yoon
,
W.
, and
Huang
,
X.
,
2011
, “
A Nonlinear Viscoelastic/Viscoplastic Constitutive Model for Ionomer Membranes in Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
196
(
8
), pp.
3933
3941
.
11.
Silberstein
,
M. N.
, and
Boyce
,
M. C.
,
2010
, “
Constitutive Modeling of the Rate, Temperature, and Hydration Dependent Deformation Response of Nafion to Monotonic and Cyclic Loading
,”
J. Power Sources
,
195
(
17
), pp.
5692
5706
.
12.
Lai
,
Y.-H.
,
Mittelsteadt
,
C. K.
,
Gittleman
,
C. S.
, and
Dillard
,
D. A.
,
2009
, “
Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
2
),
p
. 021002.
13.
Patankar
,
K. A.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y.-H.
,
Budinski
,
M. K.
, and
Gittleman
,
C. S.
,
2008
, “
Hygrothermal Characterization of the Viscoelastic Properties of Gore-Select 57 Proton Exchange Membrane
,”
Mech. Time-Depend. Mater.
,
12
(
3
), pp.
221
236
.
14.
Solasi
,
R.
,
Zou
,
Y.
,
Huang
,
X.
, and
Reifsnider
,
K.
,
2008
, “
A Time and Hydration Dependent Viscoplastic Model for Polyelectrolyte Membranes in Fuel Cells
,”
Mech. Time-Depend. Mater.
,
12
(
1
), pp.
15
30
.
15.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
,
2007
, “
Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses
,”
J. Power Sources
,
170
(
2
), pp.
345
358
.
16.
Kusoglu
,
A.
,
Tang
,
Y.
,
Santare
,
M. H.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
,
2009
, “
Stress–Strain Behavior of Perfluorosulfonic Acid Membranes at Various Temperatures and Humidities: Experiments and Phenomenological Modeling
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
1
), p.
011012
.
17.
G’sell
,
C.
,
1979
, “
Determination of the Plastic Behaviour of Solid Polymers at Constant True Strain Rate
,”
J. Mater. Sci.
,
14
(
3
), pp.
583
591
.
18.
May
,
N. H.
,
2011
, “
A Morphological Study of PFCB-Ionomer/Poly(Vinylidene Fluoride) Copolymer Blends for Fuel Cell Applications
,” Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
19.
Finlay
,
K. A.
,
2012
, “
Characterization of Sulfonated Perfluorocyclobutane/Poly(Vinylidene Difluoride) (PFCB/PVDF) Blends for Use as Proton Exchange Membranes
,” Ph.D. thesis, Virginia Polytechnic Institutive and State University, Blacksburg, VA.
20.
May
,
J. A.
,
2014
, “
Development of an Experimentally Validated Non-Linear Viscoelastic Viscoplastic Model for a Novel Fuel Cell Membrane Material
,” Ph.D. dissertation, Mechanical Engineering, Virginia Tech, Blacksburg, VA.
21.
Schapery
,
R. A.
,
1969
, “
On the Characterization of Nonlinear Viscoelastic Materials
,”
Polym. Eng. Sci.
,
9
(
4
), pp.
295
310
.
22.
Brinson
,
H. F.
, and
Brinson
,
L. C.
,
2008
,
Polymer Engineering Science and Viscoelasticity: An Introduction
,
Springer
,
New York
.
23.
Zapas
,
L. J.
, and
Crissman
,
J. M.
,
1984
, “
Creep and Recovery Behaviour of Ultra-High Molecular Weight Polyethylene in the Region of Small Uniaxial Deformations
,”
Polymer
,
25
(
1
), pp.
57
62
.
24.
Patankar
,
K.
,
2009
, “
Linear and Nonlinear Viscoelastic Characterization of Proton Exchange Membranes and Stress Modeling for Fuel Cell Applications
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
25.
Tobolsky
,
A.
, and
Eyring
,
H.
,
1943
, “
Mechanical Properties of Polymeric Materials
,”
J. Chem. Phys.
,
11
(
3
), pp.
125
134
.
26.
Haj-Ali
,
R. M.
, and
Muliana
,
A. H.
,
2004
, “
Numerical Finite Element Formulation of the Schapery Non-Linear Viscoelastic Material Model
,”
Int. J. Numer. Methods Eng.
,
59
(
1
), pp.
25
45
.
27.
Tschoegl
,
N. W.
,
Knauss
,
W. G.
, and
Emri
,
I.
,
2002
, “
Poisson’s Ratio in Linear Viscoelasticity—A Critical Review
,”
Mech. Time-Depend. Mater.
,
6
(
1
), pp.
3
51
.
28.
Argon
,
A.
,
2013
,
The Physics of Deformation and Fracture of Polymers
,
Cambridge University Press
,
Cambridge, UK
.
29.
Lai
,
J.
, and
Bakker
,
A.
,
1995
, “
An Integral Constitutive Equation for Nonlinear Plasto-Viscoelastic Behavior of High-Density Polyethylene
,”
Polym. Eng. Sci.
,
35
(
17
), pp.
1339
1347
.
You do not currently have access to this content.