Nafion 212 membrane was subjected to swelling–dehydration (SD) cycles, as a relevant operation condition for direct methanol fuel cells (DMFCs). The major degradation mechanism due to the treatment was found to be sulfonic group contamination with trace ion, rather than formation of sulfonic anhydride, which is a well-known degradation mechanism for Nafion® membranes under hydrothermal (HT) aging condition. The consequences of the degradation include decreasing water content, thickness, and surface fluoride and increasing resistance, dry weight, and a changed surface morphology. Ion selectivity of the sulfonic group was studied toward different fuel cell relevant conditions. It turned out that the sulfonic groups have much higher selectivity toward cations rather than neighbor sulfonic groups. Trace impurities in the liquid methanol feed in DMFC may therefore represent an important contamination source.

References

References
1.
Heitner-Wirguin
,
C.
,
1996
, “
Recent Advances in Perfluorinated Ionomer Membranes: Structure, Properties and Applications
,”
J. Membr. Sci.
,
120
(
1
), pp.
1
33
.
2.
Mauritz
,
K. A.
, and
Moore
,
R. B.
,
2004
, “
State of Understanding of Nafion
,”
Chem. Rev.
,
104
(
10
), pp.
4535
4585
.
3.
Thomas Reuters,
2015
, “
Web of Knowledge
,” Thomson Reuters, Philadelphia, PA, www.webofknowledge.com
4.
Kitazawa
,
M.
,
Nosaka
,
A. Y.
, and
Nosaka
,
Y.
,
2008
, “
Radical Formation in Polymer Electrolyte Fuel Cell Components as Studied by ESR Spectroscopy
,”
J. Appl. Electrochem.
,
38
(
4
), pp.
491
496
.
5.
Inaba
,
M.
,
Kinumoto
,
T.
,
Kiriake
,
M.
,
Umebayashi
,
R.
,
Tasaka
,
A.
, and
Ogumi
,
Z.
,
2006
, “
Gas Crossover and Membrane Degradation in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
,
51
(
26
), pp.
5746
5753
.
6.
Uegaki
,
R.
,
Akiyama
,
Y.
,
Tojo
,
S.
,
Honda
,
Y.
, and
Nishijima
,
S.
,
2011
, “
Radical-Induced Degradation Mechanism of Perfluorinated Polymer Electrolyte Membrane
,”
J. Power Sources
,
196
(
23
), pp.
9856
9861
.
7.
Zhao
,
D.
,
Yi
,
B. L.
,
Zhang
,
H. M.
, and
Liu
,
M. L.
,
2010
, “
The Effect of Platinum in a Nafion Membrane on the Durability of the Membrane Under Fuel Cell Conditions
,”
J. Power Sources
,
195
(
15
), pp.
4606
4612
.
8.
Ohguri
,
N.
,
Nosaka
,
A. Y.
, and
Nosaka
,
Y.
,
2010
, “
Detection of OH Radicals as the Effect of Pt Particles in the Membrane of Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
195
(
15
), pp.
4647
4652
.
9.
Chen
,
C.
, and
Fuller
,
T. F.
,
2009
, “
The Effect of Humidity on the Degradation of Nafion® Membrane
,”
Polym. Degrad. Stab.
,
94
(
9
), pp.
1436
1447
.
10.
Sethuraman
,
V. A.
,
Weidner
,
J. W.
,
Haug
,
A. T.
, and
Protsailo
,
L. V.
,
2008
, “
Durability of Perfluorosulfonic Acid and Hydrocarbon Membranes: Effect of Humidity and Temperature
,”
J. Electrochem. Soc.
,
155
(
2
), pp.
B119
B124
.
11.
Yoon
,
W.
, and
Huang
,
X. Y.
,
2010
, “
A Multiphysics Model of PEM Fuel Cell Incorporating the Cell Compression Effects
,”
J. Electrochem. Soc.
,
157
(
4
), pp.
B599
B606
.
12.
Marrony
,
M.
,
Barrera
,
R.
,
Quenet
,
S.
,
Ginocchio
,
S.
,
Montelatici
,
L.
, and
Aslanides
,
A.
,
2008
, “
Durability Study and Lifetime Prediction of Baseline Proton Exchange Membrane Fuel Cell Under Severe Operating Conditions
,”
J. Power Sources
,
182
(
2
), pp.
469
475
.
13.
Ramaswamy
,
N.
,
Hakim
,
N.
, and
Mukerjee
,
S.
,
2008
, “
Degradation Mechanism Study of Perfluorinated Proton Exchange Membrane Under Fuel Cell Operating Conditions
,”
Electrochim. Acta
,
53
(
8
), pp.
3279
3295
.
14.
Patil
,
Y.
,
Sambandam
,
S.
, and
Ramani
,
V.
,
2013
, “
Perfluorinated Polymer Electrolytes Hybridized With In Situ Grown Titania Quasi-Networks
,”
ACS Appl. Mater. Interfaces
,
5
(
1
), pp.
42
48
.
15.
Wang
,
Z.
,
Tang
,
H. L.
,
Zhang
,
H. J.
,
Lei
,
M.
,
Chen
,
R.
,
Xiao
,
P.
, and
Pan
,
M.
,
2012
, “
Synthesis of Nafion/CeO2 Hybrid for Chemically Durable Proton Exchange Membrane of Fuel Cell
,”
J. Membr. Sci.
,
421
, pp.
201
210
.
16.
Jao
,
T. C.
,
Jung
,
G. B.
,
Kuo
,
S. C.
,
Tzeng
,
W. J.
, and
Su
,
A.
,
2012
, “
Degradation Mechanism Study of PTFE/Nafion Membrane in MEA Utilizing an Accelerated Degradation Technique
,”
Int. J. Hydrogen Energy
,
37
(
18
), pp.
13623
13630
.
17.
Collette
,
F. M.
,
Lorentz
,
C.
,
Gebel
,
G.
, and
Hominette
,
F.
,
2009
, “
Hygrothermal Aging of Nafion®
,”
J. Membr. Sci.
,
330
(1–2), pp.
21
29
.
18.
Hartmann
,
P.
, and
Gerteisen
,
D.
,
2012
, “
Local Degradation Analysis of a Real Long-Term Operated DMFC Stack MEA
,”
J. Power Sources
,
219
, pp.
147
154
.
19.
Chen
,
W.
, and
Jin
,
W.
,
2012
, “
Characteristics of the Activity Loss of Anode Catalyst in DMFC
,”
Rare Metal. Mater. Eng.
,
41
(
9
), pp.
1633
1637
.
20.
Antolini
,
E.
,
2011
, “
The Problem of Ru Dissolution From Pt–Ru Catalysts During Fuel Cell Operation: Analysis and Solutions
,”
J. Solid State Electrochem.
,
15
(
3
), pp.
455
472
.
21.
Park
,
J. Y.
,
Kim
,
J. H.
,
Seo
,
Y.
,
Yu
,
D. J.
,
Cho
,
H.
, and
Bae
,
S. J.
,
2012
, “
Operating Temperature Dependency on Performance Degradation of Direct Methanol Fuel Cells
,”
Fuel Cells
,
12
(
3
), pp.
426
438
.
22.
Yang
,
L.
,
Sun
,
H.
,
Wang
,
S.
, and
Jiang
,
L.
,
2012
, “
Reversible and Irreversible Loss in Performance in Direct Methanol Fuel Cells During Freeze/Thaw Cycles
,”
J. Power Sources
,
219
, pp.
193
198
.
23.
Xie
,
Z.
,
Song
,
C.
,
Andreaus
,
B.
,
Navessin
,
T.
,
Shi
,
Z. Q.
,
Zhang
,
J. J.
, and
Holdcroft
,
S.
,
2006
, “
Discrepancies in the Measurement of Ionic Conductivity of PEMs Using Two- and Four-Probe AC Impedance Spectroscopy
,”
J. Electrochem. Soc.
,
153
(
10
), pp.
E173
E178
.
24.
Drioli
,
E.
,
Regina
,
A.
,
Casciola
,
M.
,
Oliveti
,
A.
,
Trotta
,
F.
, and
Massari
,
T.
,
2004
, “
Sulfonated PEEK-WC Membranes for Possible Fuel Cell Applications
,”
J. Membr. Sci.
,
228
(
2
), pp.
139
148
.
25.
Kreuer
,
K. D.
,
2001
, “
On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells
,”
J. Membr. Sci.
,
185
(
1
), pp.
29
39
.
26.
Hongsirikarn
,
K.
,
Goodwin
,
J. G.
,
Greenway
,
S.
, and
Creager
,
S.
,
2010
, “
Effect of Cations (Na+, Ca2+, Fe3+) on the Conductivity of a Nafion Membrane
,”
J. Power Sources
,
195
(
21
), pp.
7213
7220
.
27.
Park
,
J. Y.
,
Parka
,
K. Y.
,
Kim
,
K. B.
,
Na
,
Y.
,
Cho
,
H.
, and
Kim
,
J. H.
,
2011
, “
Influence and Mitigation Methods of Reaction Intermediates on Cell Performance in Direct Methanol Fuel Cell System
,”
J. Power Sources
,
196
(
13
), pp.
5446
5452
.
You do not currently have access to this content.