Achievement of flow uniformity among cells of a fuel cell stack continues to be an issue in fuel cell design and can affect performance and longevity. While many studies have sought to examine the effects of manifold and cell geometries on stack pressure drops and current density, few have provided detailed mapping of the manifold flowfield or examined the effect of reactant supply pipe bends on this flow, as these bends can introduce flow asymmetries within the pipe downstream of the bend. A simplified scaled up model of a proton exchange membrane (PEM) fuel cell was fitted with different inlet flow configurations, including straight piping and piping containing a 90 deg bend and 180 deg bend prior to entering the manifold. Particle image velocimetry (PIV) was used to obtain mean and fluctuating velocity statistics within the manifold and in individual cells. These distributions were compared with previous results using a partially developed square inlet profile, as well as available experimental and computational data in the literature. The presence of pipe bends resulted in highly skewed flow within the manifold, which also affected the flow distribution among individual cells.

References

References
1.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
.
2.
Costamagna
,
P.
,
Arato
,
E.
,
Achenbach
,
E.
, and
Reus
,
U.
,
1994
, “
Fluid Dynamic Study of Fuel Cell Devices: Simulation and Experimental Validation
,”
J. Power Sources
,
52
(
2
), pp.
243
249
.
3.
Boersma
,
R. J.
, and
Sammes
,
N. M.
,
1996
, “
Computational Analysis of Gas-Flow Distribution in Solid Oxide Fuel Cell Stacks
,”
J. Power Sources
,
63
(
2
), pp.
215
219
.
4.
Boersma
,
R. J.
, and
Sammes
,
N. M.
,
1997
, “
Distribution of Gas Flow in Internally Manifolded Solid Oxide Fuel-Cell Stacks
,”
J. Power Sources
,
66
, pp.
41
45
.
5.
Ma
,
Z.
,
Jeter
,
S. M.
, and
Abdel-Khalik
,
S. I.
,
2002
, “
Flow Network Analysis Application in Fuel Cells
,”
J. Power Sources
,
108
, pp.
106
112
.
6.
Koh
,
J.
,
Seo
,
H.
,
Lee
,
C.
,
Yoo
,
Y.
, and
Lim
,
H.
,
2003
, “
Pressure and Flow Distribution in Internal Gas Manifolds of a Fuel-Cell Stack
,”
J. Power Sources
,
115
(
1
), pp.
54
65
.
7.
Mohan
,
G.
,
Rao
,
B. P.
,
Das
,
S. K.
,
Pandiyan
,
S.
,
Rajalakshmi
,
N.
, and
Dhathathreyan
,
K. S.
,
2004
, “
Analysis of Flow Maldistribution of Fuel and Oxidant in a PEMFC
,”
ASME J. Energy Resour. Technol.
,
126
(
4
), pp.
262
270
.
8.
McGarry
,
M.
, and
Grega
,
L. M.
,
2006
, “
Effects of Inlet Mass Flow Distribution and Magnitude on Reactant Distribution for PEM Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
1
), pp.
45
50
.
9.
Grega
,
L. M.
,
McGarry
,
M.
,
Begum
,
M.
, and
Abruzzo
,
B.
,
2007
, “
Flow Characterization of a Polymer Electronic Membrane Fuel Cell Manifold and Individual Cells Using Particle Image Velocimetry
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
3
), pp.
272
279
.
10.
Sung
,
Y.
,
2007
, “
Optimization of a Fuel-Cell Manifold
,”
J. Power Sources
,
166
, pp.
430
434
.
11.
Bi
,
W.
,
Chen
,
D.
, and
Lin
,
Z.
,
2009
, “
A Key Geometric Parameter for the Flow Uniformity in Planar Solid Oxide Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
3873
3884
.
12.
Chen
,
D.
,
Zeng
,
Q.
,
Su
,
S.
,
Bi
,
W.
, and
Ren
,
Z.
,
2013
, “
Geometric Optimization of a 10-Cell Modular Planar Solid Oxide Fuel Cell Stack Manifold
,”
Appl. Energy
,
112
, pp.
1100
1107
.
13.
Park
,
J.
, and
Bae
,
J.
,
2012
, “
Characterization of Electrochemical Reaction and Thermo-Fluid Flow in Metal-Supported Solid Oxide Fuel Cell Stacks With Various Manifold Designs
,”
Int. J. Hydrogen Energy
,
37
(
2
), pp.
1717
1730
.
14.
Zhang
,
W.
,
Hu
,
P.
,
Lai
,
X.
, and
Peng
,
L.
,
2009
, “
Analysis and Optimization of Flow Distribution in Parallel-Channel Configurations for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
194
(
2
), pp.
931
940
.
15.
Chernyavsky
,
B.
,
Sui
,
P. C.
,
Jou
,
B. S.
, and
Djilali
,
N.
,
2011
, “
Turbulent Flow in the Distribution Header of a PEM Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
36
(
12
), pp.
7136
7151
.
16.
Lebaek
,
J.
,
Andreasen
,
M. B.
,
Andresen
,
H. A.
,
Bang
,
M.
, and
Kaer
,
S. K.
,
2010
, “
Particle Image Velocimetry and Computational Fluid Dynamics Analysis of Fuel Cell Manifold
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
3
), p.
031001
.
17.
Lebaek
,
J.
,
Bang
,
M.
, and
Kaer
,
S. K.
,
2010
, “
Flow and Pressure Distribution in Fuel Cell Manifolds
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
6
), p.
061001
.
18.
Patankar
,
S. V.
,
Pratap
,
V. S.
, and
Spalding
,
D. B.
,
1975
, “
Prediction of Turbulent Flow in Curved Pipes
,”
J. Fluid Mech.
,
67
(03), pp.
583
595
.
19.
Hellstrom
,
L. H.
,
Zlatinov
,
M. B.
,
Cao
,
G.
, and
Smits
,
A. J.
,
2013
, “
Turbulent Pipe Flow Downstream of a 90° Bend
,”
J. Fluid Mech.
,
735
, p.
R7
.
20.
Rutten
,
F.
,
Schroder
,
W.
, and
Meinke
,
M.
,
2005
, “
Large-Eddy Simulation of Low Frequency Oscillations of the Dean Vortices in Turbulent Pipe Bend Flows
,”
Phys. Fluids
,
17
(
3
), p.
035107
.
21.
Sudo
,
K.
,
Sumida
,
M.
, and
Hibara
,
H.
,
2000
, “
Experimental Investigation on Turbulent Flow Through a Circular-Sectioned 180° Bend
,”
Exp. Fluids
,
28
(
1
), pp.
51
57
.
22.
Berger
,
S. A.
, and
Talbot
,
L.
,
1983
, “
Flow in Curved Pipes
,”
Ann. Rev. Fluid Mech.
,
15
(
1
), pp.
461
512
.
23.
Kim
,
S. Y.
, and
Kim
,
W. N.
,
2007
, “
Effect of Cathode Inlet Manifold Configuration on Performance of 10-Cell Proton-Exchange Membrane Fuel Cell
,”
J. Power Sources
,
166
(
2
), pp.
430
434
.
24.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
,
1998
,
Particle Image Velocimetry
,
Springer-Verlag
,
Berlin
.
25.
Grega
,
L. M.
,
Hsu
,
T. Y.
, and
Wei
,
T.
,
2002
, “
Vorticity Transport in a Corner Formed by a Solid Wall and a Free Surface
,”
J. Fluid Mech.
,
465
, pp.
331
352
.
26.
Appleby
,
A. J.
, and
Foulkes
,
F. R.
,
1992
,
Fuel Cell Handbook
,
Krieger
, Malabar, FL.
27.
Grega
,
L. M.
, and
Voinier
,
S.
,
2011
, “
Effect of Inlet Flow Conditions on Flow Uniformity in a PEM Fuel Cell
,”
ASME
Paper No. FuelCell2011-54233.
28.
Maharudrayya
,
S.
,
Jayanti
,
S.
, and
Deshpande
,
A. P.
,
2005
, “
Flow Distribution and Pressure Drop in Parallel-Channel Configurations of Planar Fuel Cells
,”
J. Power Sources
,
144
(
1
), pp.
94
106
.
29.
Dennis
,
C. R.
, and
Ng
,
M.
,
1982
, “
Dual Solutions for Steady Laminar Flow Through a Curved Tube
,”
Q. J. Mech. Appl. Math.
,
35
(
3
), pp.
305
324
.
You do not currently have access to this content.