The United Arab Emirates (UAE) has been exploring several renewable and green technologies to help reduce the increasing pollution rates. However, its coarse climate might impose some limitations toward the types of green technologies that can be effectively deployed in the region. In the first part of this work, an improved dynamic model of the Nexa 1.2 kW PEM fuel cell is developed using particle swarm optimization (PSO), and validated using experimental data. The developed model is then used to analyze the effect of the severe climate conditions of the UAE on the performance of the system to evaluate its operational compatibility with the region.

References

References
1.
Qi
,
L.
,
Weirong
,
C.
,
Junbo
,
J.
,
Thean
,
C. Y.
, and
Ming
,
H.
,
2009
, “
Model and Operation Optimization of PEMFC Based on AFPSO
,”
IEEE Asia-Pacific Power and Energy Engineering Conference
(
APPEEC 2009
), Wuhan, China, Mar. 27–31, pp.
1
6
.
2.
Qi
,
L.
,
Weirong
,
C.
,
Junbo
,
J.
,
Thean
,
C. Y.
, and
Ming
,
H.
,
2009
, “
Proton Exchange Membrane Fuel Cell Modeling Based on Adaptive Focusing Particle Swarm Optimization
,”
J. Renewable Sustainable Energy
,
1
(
1
), p.
013105
.
3.
Qi
,
L.
,
Weirong
,
C.
,
Shukui
,
L.
,
Chuan
,
L.
, and
Junbo
,
J.
,
2009
, “
Mechanism Modeling of Proton Exchange Membrane Fuel Cell Based on Adaptive Focusing Particle Swarm Optimization
,”
Proc. CSEE
,
29
(
20
), pp.
119
124
.
4.
Qi
,
L.
,
Weirong
,
C.
,
Youyi
,
W.
,
Shukui
,
L.
, and
Junbo
,
J.
,
2011
, “
Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization
,”
IEEE Trans. Ind. Electron.
,
58
(
6
), pp.
2410
2419
.
5.
Hu
,
P.
,
Gao
,
G. Y.
,
Zhu
,
X. J.
,
Li
,
J.
, and
Ren
,
Y.
,
2009
, “
Modeling of a Fuel Cell Stack by Neural Networks Based on Particle Swarm Optimization
,”
IEEE Asia-Pacific Power and Energy Engineering Conference
(
APPEEC 2009
), Wuhan, China, Mar. 27–31, pp.
1
4
.
6.
Hu
,
P.
,
Gao
,
G. Y.
,
Zhu
,
X. J.
,
Li
,
J.
, and
Ren
,
Y.
,
2010
, “
Modeling of a Proton Exchange Membrane Fuel Cell Based on the Hybrid Particle Swarm Optimization With Levenberg–Marquardt Neural Network
,”
Simul. Model. Pract. Theory
,
18
(
5
), pp.
574
588
.
7.
Li
,
P.
,
Chen
,
J.
,
Liu
,
G.
,
Rees
,
D.
, and
Zhang
,
J.
,
2010
, “
Hybrid Model of Fuel Cell System Using Wavelet Network and PSO Algorithm
,”
IEEE Chinese Control and Decision Conference
(
CCDC
), Xuzhou, China, May 26–28, pp.
2629
2634
.
8.
Chibante
,
R.
, and
Campos
,
D.
,
2010
, “
An Experimentally Optimized PEM Fuel Cell Model Using PSO Algorithm
,”
IEEE International Symposium on Industrial Electronics
(
ISIE
), Bari, Italy, July 4–7, pp.
2281
2285
.
9.
Askarzadeh
,
A.
, and
Rezazadeh
,
A.
,
2011
, “
Optimization of PEMFC Model Parameters With a Modified Particle Swarm Optimization
,”
Int. J. Energy Res.
,
35
(
14
), pp.
1258
1265
.
10.
Li
,
X.
,
Yan
,
Q.
, and
Yu
,
D.
,
2011
, “
PEMFC Model Parameter Optimization Based on a Hybrid PSO Algorithm
,”
J. Comput. Inf. Syst.
,
7
(
2
), pp.
479
486
.
11.
Hottinen
,
T.
,
Noponen
,
M.
,
Mennola
,
T.
,
Himanen
,
O.
,
Mikkola
,
M.
, and
Lundg
,
P.
,
2003
, “
Effect of Ambient Conditions on Performance and Current Distribution of a Polymer Electrolyte Membrane Fuel Cell
,”
J. Appl. Electrochem.
,
33
(
3
), pp.
265
271
.
12.
Yan
,
Q.
,
Toghiani
,
H.
,
Lee
,
Y. W.
,
Liang
,
K.
, and
Causey
,
H.
,
2006
, “
Effect of Sub-Freezing Temperatures on a PEM Fuel Cell Performance, Startup and Fuel Cell Components
,”
J. Power Sources
,
160
(
2
), pp.
1242
1250
.
13.
Choi
,
K. S.
,
Kim
,
H. M.
,
Yoon
,
H. C.
,
Forrest
,
M. E.
, and
Erickson
,
P. A.
,
2008
, “
Effects of Ambient Temperature and Relative Humidity on the Performance of Nexa Fuel Cell
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3505
3511
.
14.
Nehrir
,
M. H.
, and
Wang
,
C.
,
2009
,
Modeling and Control of Fuel Cells: Distributed Generations Applications
(
IEEE Press Series on Power Engineering, 1st ed.), Wiley
, Hoboken,
NJ
, Chap. 3.
15.
Spiegel
,
C.
,
2008
,
PEM Fuel Cell Modeling and Simulation Using MATLAB
,
1st ed.
,
Academic Press, Burlington, MA
, Chap. 2.
16.
EG&G Technical Services Inc.
,
2004
, Fuel Cell Handbook,
7th ed.
, U.S. Department of Energy, Office of Fossil Energy,
National Energy Technology Laboratory
, Morgantown, WV, Chap. 1.
17.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
6th International Symposium on Micro Machine and Human Science
(
MHS '95
), Nagoya, Japan, Oct. 4–6, pp.
39
43
.
18.
Salim
,
R. I.
,
Noura
,
H.
, and
Fardoun
,
A.
,
2013
, “
A Parameter Identification Approach of a PEM Fuel Cell Stack Using Particle Swarm Optimization
,”
ASME
Paper No. FuelCell2013-18287.
19.
Salim
,
R. I.
,
Nabag
,
M.
,
Noura
,
H.
, and
Fardoun
,
A.
,
2014
, “
Dynamic Modeling of PEM Fuel Cell Using Particle Swarm Optimization
,”
3rd International Conference on Renewable Energy: Generations and Applications
(
ICREGA'14
), Al Ain, United Arab Emirates, Mar. 2–5.
You do not currently have access to this content.