An optimal or near to optimal design and operation of a direct liquid fuel cell (DLFC) stack requires an understanding of the relevant physical phenomena across length scales in the stack. In particular, perturbations between cells can arise due to external manifold design as well as variations in material and design parameters between cells. In this work, we seek to derive closed-form analytical expressions that capture the global stack performance, as well as individual cell behavior such as cell potential, current density, and methanol distribution. This approach allows for the simulation of large stacks with near to negligible computational overhead. Finally, the solutions are demonstrated for a stack subjected to perturbations in the anode inlet velocity of each cell.

References

References
1.
Spiegel
,
C. S.
,
2007
,
Designing & Building Fuel Cells
,
McGraw-Hill
,
New York
.
2.
Ren
,
X.
,
Davey
,
J.
,
Zelenay
,
P.
, and
Gottesfeld
,
S.
,
2000
, “
Direct Methanol Fuel Cells For Portable Power Applications
,” 198th Meeting of the Electrochemical Society, Phoenix, AZ, Oct. 22–27.
3.
Kulikovsky
,
A.
,
2000
, “
Two-Dimensional Numerical Modelling of a Direct Methanol Fuel Cell
,”
J. Appl. Electrochem.
,
30
(
9
), pp.
1005
1014
.
4.
Fan
,
J.
,
Hu
,
G.
,
Yao
,
J.
, and
Cen
,
K.
,
2002
, “
A Two-Dimensional Mathematical Model of Liquid-Feed Direct Methanol Fuel Cells
,”
Energy Fuels
,
16
(
6
), pp.
1591
1598
.
5.
Birgersson
,
E.
,
Nordlund
,
J.
,
Ekström
,
H.
,
Vynnycky
,
M.
, and
Lindbergh
,
G.
,
2003
, “
Reduced Two-Dimensional One-Phase Model for Analysis of the Anode of a DMFC
,”
J. Electrochem. Soc.
,
150
(
10
), pp.
A1368
A1376
.
6.
Birgersson
,
E.
,
Nordlund
,
J.
,
Vynnycky
,
M.
,
Picard
,
C.
, and
Lindbergh
,
G.
,
2004
, “
Reduced Two-Phase Model for Analysis of the Anode of a DMFC
,”
J. Electrochem. Soc.
,
151
(
12
), pp.
A2157
A2172
.
7.
Garcia
,
B. L.
,
Sethuraman
,
V. A.
,
Weidner
,
J. W.
, and
White
,
R. E.
,
2004
, “
Mathematical Model of a Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
1
(
1
), pp.
43
48
.
8.
Scott
,
K.
, and
Argyropoulos
,
P.
,
2004
, “
A One Dimensional Model of a Methanol Fuel Cell Anode
,”
J. Power Sources
,
137
(
2
), pp.
228
238
.
9.
Danilov
,
V. A.
,
Lim
,
J.
,
Moon
,
I.
, and
Chang
,
H.
,
2006
, “
Three-Dimensional, Two-Phase, CFD Model for the Design of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
162
(
2
), pp.
992
1002
.
10.
Rousseau
,
S.
,
Coutanceau
,
C.
,
Lamy
,
C.
, and
Leger
,
J.
,
2006
, “
Direct Ethanol Fuel Cell (DEFC): Electrical Performance and Reaction Products Distribution Under Operating Conditions With Different Platinum-Based Anodes
,”
J. Power Sources
,
158
(
1
), pp.
18
24
.
11.
Liu
,
W.
, and
Wang
,
C.-Y.
,
2007
, “
Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
,
154
(
3
), pp.
B352
B361
.
12.
Miao
,
Z.
,
He
,
Y.-L.
,
Li
,
X.-L.
, and
Zou
,
J.-Q.
,
2008
, “
A Two-Dimensional Two-Phase Mass Transport Model for Direct Methanol Fuel Cells Adopting a Modified Agglomerate Approach
,”
J. Power Sources
,
185
(
2
), pp.
1233
1246
.
13.
Oliveira
,
V.
,
Falcao
,
D.
,
Rangel
,
C.
, and
Pinto
,
A.
,
2008
, “
Heat and Mass Transfer Effects in a Direct Methanol Fuel Cell: A 1D Model
,”
Int. J. Hydrogen Energy
,
33
(
14
), pp.
3818
3828
.
14.
Ee
,
S. L.
, and
Birgersson
,
E.
,
2009
, “
Two-Dimensional Approximate Analytical Solutions for the Anode of a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
156
(
11
), pp.
B1329
B1338
.
15.
Ee
,
S. L.
, and
Birgersson
,
E.
,
2011
, “
Two-Dimensional Approximate Analytical Solutions for the Direct Liquid Fuel Cell
,”
J. Electrochem. Soc.
,
158
(
10
), pp.
B1224
B1234
.
16.
Rosenthal
,
N. S.
,
Vilekar
,
S. A.
, and
Datta
,
R.
,
2012
, “
A Comprehensive Yet Comprehensible Analytical Model for the Direct Methanol Fuel Cell
,”
J. Power Sources
,
206
, pp.
129
143
.
17.
Chiu
,
Y.-J.
, and
Sun
,
J.-L.
,
2013
, “
An Analytical Overpotential Model of a Direct Liquid Feed Fuel Cell
,”
IEEE 10th International Conference on Power Electronics and Drive Systems
(
PEDS
), Kitakyushu, Japan, Apr. 22–25, pp.
924
929
.
18.
Ling
,
C. Y.
,
Ee
,
S. L.
, and
Birgersson
,
E.
,
2013
, “
Three-Dimensional Approximate Analytical Solutions for Direct Liquid Fuel Cells
,”
Electrochim. Acta
,
109
, pp.
305
315
.
19.
Yin
,
K.-M.
,
Lin
,
H.-L.
, and
Yu
,
T.-L.
,
2009
, “
An Algebraic Model of Liquid Feed Direct Methanol Fuel Cell With Co-Current Channel Flow
,”
J. Chem. Eng. Jpn.
,
42
(
5
), pp.
358
367
.
20.
Cai
,
W.
,
Li
,
S.
,
Li
,
C.
,
Liang
,
L.
,
Xing
,
W.
, and
Liu
,
C.
,
2013
, “
A Model Based Thermal Management of DMFC Stack Considering Double-Phase Flow in the Anode
,”
Chem. Eng. Sci.
,
93
, pp.
110
123
.
21.
Kulikovsky
,
A.
,
2006
, “
Model of a Direct Methanol Fuel Cell Stack
,”
J. Electrochem. Soc.
,
153
(
9
), pp.
A1672
A1677
.
22.
Mclntyre
,
J.
,
Kulikovsky
,
A.
,
Muller
,
M.
, and
Stolten
,
D.
,
2013
, “
Large-Scale DMFC Stack Model: The Effect of a Condensation Front on Stack Performance
,”
Int. J. Hydrogen Energy
,
38
(
8
), pp.
3373
3379
.
23.
Mclntyre
,
J.
,
Kulikovsky
,
A.
,
Müller
,
M.
, and
Stolten
,
D.
,
2012
, “
Large-Scale DMFC Stack Model: Feed Disturbances and Their Impact on Stack Performance
,”
Fuel Cells
,
12
(
6
), pp.
1032
1041
.
24.
Sharma
,
A.
,
Birgersson
,
E.
, and
Khor
,
S.
,
2014
, “
Computationally-Efficient Hybrid Strategy for Mechanistic Modeling of Fuel Cell Stacks
,”
J. Power Sources
,
247
, pp.
481
488
.
25.
Sharma
,
A.
,
Birgersson
,
E.
,
Vynnycky
,
M.
, and
Ly
,
H.
,
2013b
, “
On the Interchangeability of Potentiostatic and Galvanostatic Boundary Conditions for Fuel Cells
,”
Electrochem. Acta
,
109
, pp.
617
622
.
26.
Sharma
,
A.
,
Birgersson
,
E.
, and
Vynnycky
,
M.
,
2013
, “
An Aggregate Measure for the Local Current Density Coupling in Fuel Cell Stacks
,”
J. Electrochem. Soc.
,
160
(
11
), pp.
F1237
F1240
.
27.
Maplesoft
,
2013
, “
Maple Soft 16
,” Maplesoft, Waterloo, ON Canada, http://www.maplesoft.com
28.
Mathworks
,
2013
, “
Matlab and Simulink
,” Mathworks Inc., Natick, MA, http://www.mathworks.com
29.
Placca
,
L.
,
Kouta
,
R.
,
Blachot
,
J.-F.
, and
Charon
,
W.
,
2009
, “
Effects of Temperature Uncertainty on the Performance of a Degrading PEM Fuel Cell Model
,”
J. Power Sources
,
194
(
1
), pp.
313
327
.
30.
Mawardi
,
A.
, and
Pitchumani
,
R.
,
2006
, “
Effects of Parameter Uncertainty on the Performance Variability of Proton Exchange Membrane (PEM) Fuel Cells
,”
J. Power Sources
,
160
(
1
), pp.
232
245
.
31.
Kulikovsky
,
A. A.
,
2010
,
Analytical Modelling of Fuel Cells
,
Elsevier
,
Oxford, UK
.
32.
Casalegno
,
A.
,
Grassini
,
P.
, and
Marchesi
,
R.
,
2007
, “
Experimental Analysis of Methanol Cross-Over in a Direct Methanol Fuel Cell
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
748
754
.
33.
He
,
Z.
,
Birgersson
,
E.
, and
Li
,
H.
,
2014
, “
Reduced Non-Isothermal Model for the Planar Solid Oxide Fuel Cell and Stack
,”
Energy
,
70
, pp.
478
492
.
This content is only available via PDF.
You do not currently have access to this content.