The creep and failure probability of a planar solid oxide fuel cell (SOFC) through a duty cycle is calculated by finite element method (FEM) and Weibull method, respectively. Two sealing methods, namely, rigid seal and bonded compliant seal (BCS), are compared. For the rigid seal, failure is predicted in the glass ceramic because of a failure probability of 1 and maximum creep strain. For the BCS design, the foil can absorb part of thermal stresses in the cell by its own elastoplastic deformation, which considerably decreases failure probability and creep strain in the SOFC. The creep strength of BCS method is achieved by sealing foil with excellent creep properties. Temperature fluctuation during the operating stage leads to the increase in thermal stress and failure probability. In particular, temperature change from low-power to high-power state results in a considerable increase in the creep strain, leading to creep failure for the rigid seal. A failure probability of 1 is generated during start-up and shut-down stages. Therefore, temperature fluctuation should be controlled to ensure structural integrity, and lowering the operating temperature can decrease failure probability and creep failure.

References

References
1.
Mahapatra
,
M. K.
, and
Lu
,
K.
,
2010
, “
Seal Glass for Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
21
), pp.
7129
7139
.
2.
Chou
,
Y.-S.
, and
Stevenson
,
J. W.
,
2003
, “
Mid-Term Stability of Novel Mica-Based Compressive Seals for Solid Oxide Fuel Cells
,”
J. Power Sources
,
115
(
2
), pp.
274
278
.
3.
Chou
,
Y.-S.
,
Choi
,
J.-P.
, and
Stevenson
,
J. W.
,
2012
, “
Compliant Alkali Silicate Sealing Glass for Solid Oxide Fuel Cell Applications: The Effect of Protective Alumina Coating on Electrical Stability in Dual Environment
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
18372
18380
.
4.
Kaur
,
G.
,
Singh
,
K.
,
Pandey
,
O. P.
,
Homa
,
D.
,
Scott
,
B.
, and
Pickrell
,
G.
,
2013
, “
Structural and Thermal Properties of Glass Composite Seals and Their Chemical Compatibility With Crofer 22APU for Solid Oxide Fuel Cells Applications
,”
J. Power Sources
,
240
, pp.
458
470
.
5.
Smeacetto
,
F.
,
Salvo
,
M.
,
D'Hérin Bytner
,
F. D.
,
Leone
,
P.
, and
Ferraris
,
M.
,
2010
, “
New Glass and Glass–Ceramic Sealants for Planar Solid Oxide Fuel Cells
,”
J. Eur. Ceram. Soc.
,
30
(
4
), pp.
933
940
.
6.
Smeacetto
,
F.
,
Salvo
,
M.
,
Santarelli
,
M.
,
Leone
,
P.
,
Ortigoza-Villalba
,
G. A.
,
Lanzini
,
A.
,
Ajitdoss
,
L. C.
, and
Ferraris
,
M.
,
2013
, “
Performance of a Glass–Ceramic Sealant in a SOFC Short Stack
,”
Int. J. Hydrogen Energy
,
38
(
1
), pp.
588
596
.
7.
Vaidya
,
S.
, and
Kim
,
J.-H.
,
2013
, “
Finite Element Thermal Stress Analysis of Solid Oxide Fuel Cell Cathode Microstructures
,”
J. Power Sources
,
225
, pp.
269
276
.
8.
Weil
,
K. S.
,
Hardy
,
J. S.
, and
Koeppel
,
B. J.
,
2006
, “
New Sealing Concept for Planar Solid Oxide Fuel Cells
,”
J. Mater. Eng. Perform.
,
15
(
4
), pp.
427
432
.
9.
Weil
,
K. S.
, and
Koeppel
,
B. J.
,
2008
, “
Thermal Stress Analysis of the Planar SOFC Bonded Compliant Seal Design
,”
Int. J. Hydrogen Energy
,
33
(
14
), pp.
3976
3990
.
10.
Weil
,
K. S.
, and
Koeppel
,
B. J.
,
2008
, “
Comparative Finite Element Analysis of the Stress–Strain States in Three Different Bonded Solid Oxide Fuel Cell Seal Designs
,”
J. Power Sources
,
180
(
1
), pp.
343
353
.
11.
Jiang
,
T. L.
, and
Chen
,
M.-H.
,
2009
, “
Thermal-Stress Analyses of an Operating Planar Solid Oxide Fuel Cell With the Bonded Compliant Seal Design
,”
Int. J. Hydrogen Energy
,
34
(
19
), pp.
8223
8234
.
12.
Jiang
,
W.
,
Tu
,
S. T.
,
Li
,
G. C.
, and
Gong
,
J. M.
,
2010
, “
Residual Stress and Plastic Strain Analysis in the Brazed Joint of Bonded Compliant Seal Design in Planar Solid Oxide Fuel Cell
,”
J. Power Sources
,
195
(
11
), pp.
3513
3522
.
13.
Zhang
,
Y.-C.
,
Jiang
,
W.
,
Tu
,
S.-T.
,
Wen
,
J.-F.
, and
Woo
,
W.
,
2014
, “
Using Short-Time Creep Relaxation Effect to Decrease the Residual Stress in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell—A Finite Element Simulation
,”
J. Power Sources
,
255
, pp.
108
115
.
14.
Malzbender
,
J.
,
Zhao
,
Y.
, and
Beck
,
T.
,
2014
, “
Fracture and Creep of Glass–Ceramic Solid Oxide Fuel Cell Sealant Materials
,”
J. Power Sources
,
246
, pp.
574
580
.
15.
Lin
,
C.-K.
,
Lin
,
K.-L.
,
Yeh
,
J.-H.
,
Shiu
,
W.-H.
,
Liu
,
C.-K.
, and
Lee
,
R.-Y.
,
2013
, “
Aging Effects on High-Temperature Creep Properties of a Solid Oxide Fuel Cell Glass–Ceramic Sealant
,”
J. Power Sources
,
241
, pp.
12
19
.
16.
Milhans
,
J.
,
Khaleel
,
M.
,
Sun
,
X.
,
Tehrani
,
M.
,
Al-Haik
,
M.
, and
Garmestani
,
H.
,
2010
, “
Creep Properties of Solid Oxide Fuel Cell Glass–Ceramic Seal G18
,”
J. Power Sources
,
195
(
11
), pp.
3631
3635
.
17.
Chiu
,
Y.-T.
, and
Lin
,
C.-K.
,
2012
, “
Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect
,”
J. Power Sources
,
198
, pp.
149
157
.
18.
Chiu
,
Y.-T.
,
Lin
,
C.-K.
, and
Wu
,
J.-C.
,
2011
, “
High-Temperature Tensile and Creep Properties of a Ferritic Stainless Steel for Interconnect in Solid Oxide Fuel Cell
,”
J. Power Sources
,
196
(
4
), pp.
2005
2012
.
19.
Lin
,
C.-K.
,
Lin
,
K.-L.
,
Yeh
,
J.-H.
,
Wu
,
S.-H.
,
Lee
,
R.-Y.
,
Malzbender
,
J.
,
Zhao
,
Y.
, and
Beck
,
T.
,
2014
, “
Creep Rupture of the Joint of a Solid Oxide Fuel Cell Glass–Ceramic Sealant With Metallic Interconnect
,”
J. Power Sources
,
245
, pp.
787
795
.
20.
Greco
,
F.
,
Lund Frandsen
,
H.
,
Nakajo
,
A.
,
Madsen
,
M. F.
, and
Van Herle
,
J.
,
2014
, “
Modelling the Impact of Creep on the Probability of Failure of a Solid Oxide Fuel Cell Stack
,”
J. Eur. Ceram. Soc.
,
34
(
11
), pp.
2695
2704
.
21.
Clague
,
R.
,
Marquis
,
A. J.
, and
Brandon
,
N. P.
,
2012
, “
Finite Element and Analytical Stress Analysis of a Solid Oxide Fuel Cell
,”
J. Power Sources
,
210
, pp.
224
232
.
22.
Clague
,
R.
,
Marquis
,
A. J.
, and
Brandon
,
N. P.
,
2013
, “
Time Independent and Time Dependent Probability of Failure of Solid Oxide Fuel Cells by Stress Analysis and the Weibull Method
,”
J. Power Sources
,
221
, pp.
290
299
.
23.
Jiang
,
W.
,
Zhang
,
Y.
,
Luo
,
Y.
,
Gong
,
J. M.
, and
Tu
,
S. T.
,
2013
, “
Creep Analysis of Solid Oxide Fuel Cell With Bonded Compliant Seal Design
,”
J. Power Sources
,
243
, pp.
913
918
.
24.
Chang
,
H.-T.
,
Lin
,
C.-K.
,
Liu
,
C.-K.
, and
Wu
,
S.-H.
,
2011
, “
High-Temperature Mechanical Properties of a Solid Oxide Fuel Cell Glass Sealant in Sintered Forms
,”
J. Power Sources
,
196
(
7
), pp.
3583
3591
.
25.
Dey
,
T.
,
Singdeo
,
D.
,
Bose
,
M.
,
Basu
,
R. N.
, and
Ghosh
,
P. C.
,
2013
, “
Study of Contact Resistance at the Electrode–Interconnect Interfaces in Planar Type Solid Oxide Fuel Cells
,”
J. Power Sources
,
233
, pp.
290
298
.
26.
Nakajo
,
A.
,
Kuebler
,
J.
,
Faes
,
A.
,
Vogt
,
U. F.
,
Schindler
,
H. J.
,
Chiang
,
L.-K.
,
Modena
,
S.
,
Van Herle
,
J.
, and
Hocker
,
T.
,
2012
, “
Compilation of Mechanical Properties for the Structural Analysis of Solid Oxide Fuel Cell Stacks. Constitutive Materials of Anode-Supported Cells
,”
Ceram. Int.
,
38
(
5
), pp.
3907
3927
.
27.
Chang
,
H.-T.
,
Lin
,
C.-K.
, and
Liu
,
C.-K.
,
2010
, “
Effects of Crystallization on the High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell
,”
J. Power Sources
,
195
(
10
), pp.
3159
3165
.
28.
Dryepondt
,
S.
,
Pint
,
B. A.
, and
Lara-Curzio
,
E.
,
2012
, “
Creep Behavior of Commercial FeCrAl Foils: Beneficial and Detrimental Effects of Oxidation
,”
Mater. Sci. Eng. A
,
550
, pp.
10
18
.
29.
Bull
,
S. J.
,
1998
, “
Modeling of Residual Stress in Oxide Scales
,”
Oxid. Met.
,
49
(
1–2
), pp.
1
17
.
30.
Kang
,
K. J.
, and
Mercer
,
C.
,
2008
, “
Creep Properties of a Thermally Grown Alumina
,”
Mater. Sci. Eng. A
,
478
(
1–2
), pp.
154
162
.
31.
Barnes
,
J.
,
Velasco
,
M.
, and
Schlatter
,
J.
,
2002
, “
Durability of Catalytic Combustion Appendix III: Systems Combustion Catalyst Axial Support Mechanical Durability
,”
Catalytica Energy Systems
,
Tempe, AZ
.
32.
Jin
,
S.
,
Tu
,
S. T.
,
Gong
,
J. M.
, and
Ling
,
X.
,
2005
, “
High Temperature Creep Strength of As-Cast Ni-Based Brazing Filler
,”
Mater. Mech. Eng.
,
29
(
7
), pp.
20
24
(in Chinese).
33.
Akbari
,
M.
,
Buhl
,
S.
,
Leinenbach
,
C.
,
Spolenak
,
R.
, and
Wegener
,
K.
,
2012
, “
Thermomechanical Analysis of Residual Stresses in Brazed Diamond Metal Joints Using Raman Spectroscopy and Finite Element Simulation
,”
Mech. Mater.
,
52
, pp.
69
77
.
34.
Laurencin
,
J.
,
Delette
,
G.
,
Usseglio-Viretta
,
F.
, and
Di Iorio
,
S.
,
2011
, “
Creep Behaviour of Porous SOFC Electrodes: Measurement and Application to Ni-8YSZ Cermets
,”
J. Eur. Ceram. Soc.
,
31
(
9
), pp.
1741
1752
.
35.
Lipińska-Chwałek
,
M.
,
Pećanac
,
G.
, and
Malzbender
,
J.
,
2013
, “
Creep Behaviour of Membrane and Substrate Materials for Oxygen Separation Units
,”
J. Eur. Ceram. Soc.
,
33
(
10
), pp.
1841
1848
.
36.
Anandakumar
,
G.
,
Li
,
N.
,
Verma
,
A.
,
Singh
,
P.
, and
Kim
,
J.-H.
,
2010
, “
Thermal Stress and Probability of Failure Analyses of Functionally Graded Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
19
), pp.
6659
6670
.
37.
Weibull
,
W.
,
1939
, “
A Statistical Theory of the Strength of Materials
,”
Ingeniors Vetens kapsakademiens
,
151
, pp.
1
45
.
38.
Laurencin
,
J.
,
Delette
,
G.
,
Lefebvre-Joud
,
F.
, and
Dupeux
,
M.
,
2008
, “
A Numerical Tool to Estimate SOFC Mechanical Degradation: Case of the Planar Cell Configuration
,”
J. Eur. Ceram. Soc.
,
28
(
9
), pp.
1857
1869
.
39.
Peksen
,
M.
,
2013
, “
3D Transient Thermomechanical Behaviour of a Full Scale SOFC Short Stack
,”
Int. J. Hydrogen Energy
,
38
(
10
), pp.
4099
4107
.
You do not currently have access to this content.