A one-dimensional analytical model of a direct methanol fuel cell (DMFC) was presented. This model was developed to describe the electrochemical reactions on the anode and cathode electrodes, and the transport phenomena in fuel cell consisting of methanol transport from anode to cathode through the membrane (methanol crossover), diffusion of reactants in gas diffusion layers (GDLs), and fluid flow in flow channels. One of the main strike features of this work was that the complicated relations were simplified logically and the model was solved analytically by the first-order differential equation. The results of the model indicated that increasing the current density led to lower methanol concentration in anode in spite of higher oxygen concentration in cathode. The presented model supports the experimental data well.

References

1.
Hassan
,
M. A.
,
Kamarudin
,
S. K.
,
Loh
,
K. S.
, and
Daud
,
W. R. W.
,
2014
, “
Sensors for Direct Methanol Fuel Cells
,”
J. Renewable Sustainable Energy Rev.
,
40
, pp.
1060
1069
.
2.
Yuan
,
W.
,
Zhou
,
B.
,
Deng
,
J.
,
Tang
,
Y.
,
Zhang
,
Z.
, and
Li.
,
Z.
,
2014
, “
Overview on the Developments of Vapor-Feed Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
12
), pp.
6689
6704
.
3.
Hikita
,
S.
,
Yamane
,
K.
, and
Nakajima
,
Y.
,
2001
, “
Measurement of Methanol Crossover in Direct Methanol Fuel Cell
,”
JSAE Rev.
,
22
(
2
), pp.
151
156
.
4.
Kamarudin
,
S. K.
,
Achmad
,
F.
, and
Daud
,
W. R. W.
,
2009
, “
Overview on the Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6902
6916
.
5.
Casalegno
,
A.
,
Bresciani
,
F.
,
Zago
,
M.
, and
Marchesi
,
R.
,
2014
, “
Experimental Investigation of Methanol Crossover Evolution During Direct Methanol Fuel Cell Degradation Tests
,”
J. Power Sources
,
249
, pp.
103
109
.
6.
Xu
,
C.
,
Faghri
,
A.
,
Li
,
X.
, and
Ward
,
T.
,
2010
, “
Methanol and Water Crossover in a Passive Liquid-Feed Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
(
4
), pp.
1769
1777
.
7.
Jung
,
N.
,
Cho
,
Y.
,
Ahn
,
M.
,
Lim
,
J.
,
Kang
,
Y.
,
Chung
,
D.
,
Kim
,
J.
,
Cho
,
Y.
, and
Sung
,
Y.
,
2011
, “
Methanol-Tolerant Cathode Electrode Structure Composed of Heterogeneous Composites to Overcome Methanol Crossover Effects for Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
36
(
24
), pp.
15731
15738
.
8.
Ko
,
J.
,
Lee
,
G.
,
Choi
,
Y.
,
Chippar
,
P.
,
Kang
,
K.
, and
Ju
,
H.
,
2011
, “
Comparison of Numerical Simulation Results With Experimental Current Density and Methanol-Crossover Data for Direct Methanol Fuel Cells
,”
J. Power Sources
,
196
(
3
), pp.
935
945
.
9.
Wan
,
C. H.
, and
Lin
,
M. T.
,
2013
, “
Mitigating Methanol Crossover With Self-Assembled Pt35eRu65 Catalyst on Nafion Surface
,”
J. Power Sources
,
222
, pp.
470
476
.
10.
Jiang
,
S. P.
, and
Tang
,
H.
,
2012
, “
Methanol Crossover Reduction by Nafion Modification Via Layer-By-Layer Self-Assembly Techniques
,”
J. Colloids Surf. A: Physicochem. Eng. Aspects
,
407
, pp.
49
57
.
11.
Deng
,
H.
,
Chen
,
J.
,
Jiao
,
K.
, and
Huang
,
X.
,
2014
, “
An Analytical Model for Alkaline Membrane Direct Methanol Fuel Cell
,”
Int. J. Heat Mass Transfer
,
74
, pp.
376
390
.
12.
Rosenthal
,
N.
,
Vilekar
,
S. A.
, and
Datta
,
R.
,
2012
, “
A Comprehensive Yet Comprehensible Analytical Model for the Direct Methanol Fuel Cell
,”
J. Power Sources
,
206
, pp.
129
143
.
13.
Kulikovsky
,
A. A.
,
2003
, “
Analytical Model of the Anode Side of DMFC: The Effect of Non-Tafel Kinetics on Cell Performance
,”
J. Electrochem. Commun.
,
5
(
7
), pp.
530
538
.
14.
Guo
,
H.
, and
Ma
,
C.
,
2004
, “
2D Analytical Model of a Direct Methanol Fuel Cell
,”
J. Electrochem. Commun.
,
6
(
3
), pp.
306
312
.
15.
Kulikovsky
,
A. A.
,
2000
, “
Two-Dimensional Numerical Modelling of a Direct Methanol Fuel Cell
,”
J. Appl. Electrochem.
,
30
(
9
), pp.
1005
1014
.
16.
Chen
,
C. H.
, and
Yeh
,
T. K.
,
2006
, “
A Mathematical Model for Simulating Methanol Permeation and the Mixed Potential Effect in a Direct Methanol Fuel Cell
,”
J. Power Sources
,
160
(
2
), pp.
1131
1141
.
17.
Jeng
,
K. T.
, and
Chen
,
C. W.
,
2002
, “
Modeling and Simulation of a Direct Methanol Fuel Cell Anode
,”
J. Power Sources
,
112
(
2
), pp.
367
375
.
18.
He
,
Y.
,
Miao
,
Z.
,
Zhao
,
T.
, and
Yang
,
W.
,
2012
, “
Numerical Study of the Effect of the GDL Structure on Water Crossover in a Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
5
), pp.
4422
4438
.
19.
García-Salaberri
,
P. A.
,
Vera
,
M.
, and
Iglesias
,
G.
,
2014
, “
Modeling of the Anode of a Liquid-Feed DMFC: Inhomogeneous Compression Effects and Two-Phase Transport Phenomena
,”
J. Power Sources
,
246
, pp.
239
252
.
20.
Herrera
,
O. E.
,
Wilkinson
,
D. P.
, and
Mérida
,
W.
,
2012
, “
Anode and Cathode Overpotentials and Temperature Profiles in a PEMFC
,”
J. Power Sources
,
198
, pp.
132
142
.
21.
Kulikovsky
,
A. A.
,
2012
, “
A Model for DMFC Cathode Impedance: The Effect of Methanol Crossover
,”
J. Electrochem. Commun.
,
24
, pp.
65
68
.
22.
Seo
,
S. H.
, and
Lee
,
C. S.
,
2010
, “
A Study on the Overall Efficiency of Direct Methanol Fuel Cell by Methanol Crossover Current
,”
J. Appl. Energy
,
87
(
8
), pp.
2597
2604
.
23.
Lu
,
G.
, and
Wang
,
C. Y.
,
2005
,
Transport Phenomena in Fuel Cell
, M. Sundén and M. Farghi, eds.,
WIT Press
, Ashurst, UK, Chap. 9.
24.
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1992
, “
High Performance Catalyzed Membranes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
139
(2), pp.
L28
L30
.
25.
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1992
, “
Thin-Film Catalyst Layer for Polymer Electrolyte Fuel Cell Electrodes
,”
J. Appl. Electrochem.
,
22
(
1
), pp.
1
7
.
26.
Gottesfeld
,
S.
, and
Zawodzinski
,
T.
,
1997
, “
Polymer Electrolyte Fuel Cell
,”
Advances in Electrochemical Science and Engineering
, Vol.
5
, pp.
195
381
.
27.
Mehta
,
V.
, and
Cooper
,
J. S.
,
2003
, “
Review and Analysis of PEM Fuel Cell Design and Manufacturing
,”
J. Power Sources
,
114
(
1
), pp.
32
53
.
28.
Scott
,
K.
,
Taama
,
W.
, and
Cruickshank
,
J.
,
1997
, “
Performance and Modelling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
65
, pp.
159
171
.
You do not currently have access to this content.