A bipolar plate (BP) is one of the key components of proton exchange membrane fuel cells (PEMFCs) and accounts for a major portion of their manufacturing cost. Stainless steel is considered as one of the candidate materials for the BPs of the cells because of the short manufacturing process. In this study, the effects of channel geometry on the formability of 304 stainless steel in a stamping process are investigated via numerical simulation and experiments. A finite element (FE) model using ansys, a commercial software, is developed to analyze the effects of selected channel geometry parameters on the formability of stamped stainless steel sheets. Modeling results are compared partly to the results of a series of stamping experiments. Both modeling and experimental results suggest that the draft angle has a greater influence on formability than other parameters in a stamping process.

References

References
1.
Bar-On
,
I.
,
Kirchain
,
R.
, and
Roth
,
R.
,
2002
, “
Technical Cost Analysis for PEM Fuel Cells
,”
J. Power Sources
,
109
(
1
), pp.
71
75
.
2.
Marcinkoski
,
J.
,
James
,
B. D.
,
Kalinoski
,
J. A.
,
Podolski
,
W.
,
Benjamin
,
T.
, and
Kopasz
,
J.
,
2011
, “
Manufacturing Process Assumptions Used in Fuel Cell System Cost Analyses
,”
J. Power Sources
,
196
(
12
), pp.
5282
5292
.
3.
Li
,
X.
, and
Sabir
,
I.
,
2005
, “
Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs
,”
Int. J. Hydrogen Energy
,
30
(
4
), pp.
359
371
.
4.
Hinds
,
G.
, and
Brightman
,
E.
,
2015
, “
Towards More Representative Test Methods for Corrosion Resistance of PEMFC Metallic Bipolar Plates
,”
Int. J. Hydrogen Energy
,
40
(
6
), pp.
2785
2791
.
5.
Cunningham
,
N.
,
Guay
,
D.
,
Dodelet
,
J. P.
,
Meng
,
Y.
,
Hlil
,
A. R.
, and
Hay
,
A. S.
,
2002
, “
New Materials and Procedures to Protect Metallic PEM Fuel Cell Bipolar Plates
,”
J. Electrochem. Soc.
,
149
(
7
), pp.
A905
A911
.
6.
Del-Río
,
C.
,
Ojeda
,
M. C.
,
Acosta
,
J. L.
,
Escudero
,
M. J.
,
Hontañón
,
E.
, and
Daza
,
L.
,
2002
, “
New Polymer Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells: Synthesis and Characterization
,”
J. Appl. Polym. Sci.
,
83
(
13
), pp.
2817
2822
.
7.
Cho
,
E. A.
,
Jeon
,
U.-S.
,
Ha
,
H. Y.
,
Hong
,
S.-A.
, and
Oh
,
I.-H.
,
2004
, “
Characteristics of Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
125
(
2
), pp.
178
182
.
8.
Davies
,
D. P.
,
Adcock
,
P. L.
,
Turpin
,
M.
, and
Rowen
,
S. J.
,
2000
, “
Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells
,”
J. Power Sources
,
86
(
1–2
), pp.
237
242
.
9.
Hermann
,
A.
,
Chaudhuri
,
T.
, and
Spagnol
,
P.
,
2005
, “
Bipolar Plates for PEM Fuel Cells: A Review
,”
Int. J. Hydrogen Energy
,
30
(
12
), pp.
1297
1302
.
10.
Tawfik
,
H.
,
Hung
,
Y.
, and
Mahajan
,
D.
,
2007
, “
Metal Bipolar Plates for PEM Fuel Cell—A Review
,”
J. Power Sources
,
163
(
2
), pp.
755
767
.
11.
Kraytsberg
,
A.
,
Auinat
,
M.
, and
Ein-Eli
,
Y.
,
2007
, “
Reduced Contact Resistance of PEM Fuel Cell's Bipolar Plates Via Surface Texturing
,”
J. Power Sources
,
164
(
2
), pp.
697
703
.
12.
Wang
,
H.
,
Sweikart
,
M. A.
, and
Turner
,
J. A.
,
2003
, “
Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
115
(
2
), pp.
243
251
.
13.
Li
,
M.
,
Luo
,
S.
,
Zeng
,
C.
,
Shen
,
J.
,
Lin
,
H.
, and
Cao
,
C.
,
2004
, “
Corrosion Behavior of TiN Coated Type 316 Stainless Steel in Simulated PEMFC Environments
,”
Corros. Sci.
,
46
(
6
), pp.
1369
1380
.
14.
Joseph
,
S.
,
McClure
,
J. C.
,
Sebastian
,
P. J.
,
Moreira
,
J.
, and
Valenzuela
,
E.
,
2008
, “
Polyaniline and Polypyrrole Coatings on Aluminum for PEM Fuel Cell Bipolar Plates
,”
J. Power Sources
,
177
(
1
), pp.
161
166
.
15.
Hodgson
,
D. R.
,
May
,
B.
,
Adcock
,
P. L.
, and
Davies
,
D. P.
,
2001
, “
New Lightweight Bipolar Plate System for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
96
(
1
), pp.
233
235
.
16.
Jung
,
H.-Y.
,
Huang
,
S.-Y.
,
Ganesan
,
P.
, and
Popov
,
B. N.
,
2009
, “
Performance of Gold-Coated Titanium Bipolar Plates in Unitized Regenerative Fuel Cell Operation
,”
J. Power Sources
,
194
(
2
), pp.
972
975
.
17.
Zhang
,
H.
,
Hou
,
M.
,
Lin
,
G.
,
Han
,
Z.
,
Fu
,
Y.
,
Sun
,
S.
,
Shao
,
Z.
, and
Yi
,
B.
,
2011
, “
Performance of Ti–Ag-Deposited Titanium Bipolar Plates in Simulated Unitized Regenerative Fuel Cell (URFC) Environment
,”
Int. J. Hydrogen Energy
,
36
(
9
), pp.
5695
5701
.
18.
Tian
,
R.
,
Sun
,
J.
, and
Wang
,
L.
,
2006
, “
Plasma-Nitrided Austenitic Stainless Steel 316L as Bipolar Plate for PEMFC
,”
Int. J. Hydrogen Energy
,
31
(
13
), pp.
1874
1878
.
19.
Wang
,
Y.
, and
Northwood
,
D. O.
,
2006
, “
An Investigation Into Polypyrrole-Coated 316L Stainless Steel as a Bipolar Plate Material for PEM Fuel Cells
,”
J. Power Sources
,
163
(
1
), pp.
500
508
.
20.
Fu
,
Y.
,
Lin
,
G.
,
Hou
,
M.
,
Wu
,
B.
,
Shao
,
Z.
, and
Yi
,
B.
,
2009
, “
Carbon-Based Films Coated 316L Stainless Steel as Bipolar Plate for Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
405
409
.
21.
Kim
,
K. M.
,
Park
,
J. H.
,
Kim
,
H. S.
,
Kim
,
J. H.
,
Lee
,
Y. Y.
, and
Kim
,
K. Y.
,
2012
, “
Effect of Plastic Deformation on the Corrosion Resistance of Ferritic Stainless Steel as a Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
10
), pp.
8459
8464
.
22.
Chung
,
C.-Y.
,
Chen
,
S.-K.
,
Chiu
,
P.-J.
,
Chang
,
M.-H.
,
Hung
,
T.-T.
, and
Ko
,
T.-H.
,
2008
, “
Carbon Film-Coated 304 Stainless Steel as PEMFC Bipolar Plate
,”
J. Power Sources
,
176
(
1
), pp.
276
281
.
23.
Wang
,
L.
,
Sun
,
J.
,
Li
,
P.
,
Jing
,
B.
,
Li
,
S.
,
Wen
,
Z.
, and
Ji
,
S.
,
2012
, “
Niobized AISI 304 Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
208
, pp.
397
403
.
24.
Turan
,
C.
,
Cora
,
Ö. N.
, and
Koç
,
M.
,
2011
, “
Effect of Manufacturing Processes on Contact Resistance Characteristics of Metallic Bipolar Plates in PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12370
12380
.
25.
Peng
,
L.
,
Lai
,
X.
,
Liu
,
D.
,
Hu
,
P.
, and
Ni
,
J.
,
2008
, “
Flow Channel Shape Optimum Design for Hydroformed Metal Bipolar Plate in PEM Fuel Cell
,”
J. Power Sources
,
178
(
1
), pp.
223
230
.
26.
Peng
,
L.
,
Hu
,
P.
,
Lai
,
X.
,
Mei
,
D.
, and
Ni
,
J.
,
2009
, “
Investigation of Micro/Meso Sheet Soft Punch Stamping Process—Simulation and Experiments
,”
Mater. Des.
,
30
(
3
), pp.
783
790
.
27.
Yi
,
P. Y.
,
Peng
,
L. F.
,
Lai
,
X. M.
,
Liu
,
D. A.
, and
Ni
,
J.
,
2010
, “
A Novel Design of Wave-Like PEMFC Stack With Undulate MEAs and Perforated Bipolar Plates
,”
Fuel Cells
,
10
(
1
), pp.
111
117
.
28.
Liu
,
Y.
, and
Hua
,
L.
,
2010
, “
Fabrication of Metallic Bipolar Plate for Proton Exchange Membrane Fuel Cells by Rubber Pad Forming
,”
J. Power Sources
,
195
(
11
), pp.
3529
3535
.
29.
Hu
,
Q.
,
Zhang
,
D.
,
Fu
,
H.
, and
Huang
,
K.
,
2014
, “
Investigation of Stamping Process of Metallic Bipolar Plates in PEM Fuel Cell—Numerical Simulation and Experiments
,”
Int. J. Hydrogen Energy
,
39
(
25
), pp.
13770
13776
.
30.
Kumar
,
A.
, and
Reddy
,
R. G.
,
2003
, “
Effect of Channel Dimensions and Shape in the Flow-Field Distributor on the Performance of Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
113
(
1
), pp.
11
18
.
You do not currently have access to this content.