In a proton exchange membrane fuel cell (PEMFC), the hydrogen feed into the anode in a periodical pressure swing, so-called hydrogen pressure pulsation feed (HPPF), significantly affects the transport phenomena of hydrogen and water in the anode flow field. HPPF could adjust the distribution of the back diffusion water and the hydrogen partial pressure along the anode flow channels, improve hydrogen mass transfer in the anode flow field, and enhance the diffusion of hydrogen in the porous medium (anode diffusion layer). On the other hand, HPPF technique could mitigate the anode flooding issue caused by water back diffusion from the cathode, improve the fuel cell performance. In this work, the principle of HPPF technique was introduced and analyzed by a mathematic approach. Some of the important parameters used in HPPF technique, such as amplitude of pulsation pressure, pulsating frequency, etc., were experimentally investigated on dead-end mode PEMFC stack. The experimental results showed that the amplitude of pressure pulsation, pulsating frequency, and position applied for HPPF highly affected the performance of the PEMFC stack. It can be seen that higher the frequency and/or amplitude of pressure pulsation, the better the performance of PEMFC stack.

References

References
1.
EG&G Technical Services, Inc.
,
2004
,
Fuel Cell Handbook
,
7th ed.
,
University Press of the Pacific
,
Morgantown, WV
, Chap. 1.
2.
Bussayajarn
,
N.
,
Ming
,
H.
,
Hoong
,
K. K.
, and
Chan
,
S. H.
,
2009
, “
Planar Air Breathing PEMFC With Self-Humidifying MEA and Open Cathode Geometry Design for Portable Applications
,”
Int. J. Hydrogen Energy
,
34
(
18
), pp.
7761
7767
.
3.
Siegel
,
J. B.
,
McKay
,
D. A.
,
Stefanopoulou
,
A. G.
,
Hussey
,
D. S.
, and
Jacobson
,
D. L.
,
2008
, “
Measurement of Liquid Water Accumulation in a PEMFC With Dead-Ended Anode
,”
J. Electrochem. Soc.
,
155
(
11
), pp.
B1168
B1178
.
4.
Holmström
,
N.
,
Ihonen
,
J.
,
Lundblad
,
A.
, and
Lindbergh
,
G.
,
2007
, “
The Influence of the Gas Diffusion Layer on Water Management in Polymer Electrolyte Fuel Cells
,”
Fuel Cells
,
7
(
4
), pp.
306
313
.
5.
Li
,
A.
,
Chan
,
S. H.
, and
Nguyen
,
N.
,
2009
, “
Anti-Flooding Cathode Catalyst Layer for High Performance PEM Fuel Cell
,”
Electrochem. Commun.
,
11
(
4
), pp.
897
900
.
6.
Himanen
,
O.
,
Hottinen
,
T.
, and
Tuurala
,
S.
,
2007
, “
Operation of a Planar Free-Breathing PEMFC in a Dead-End Mode
,”
Electrochem. Commun.
,
9
(
5
), pp.
891
894
.
7.
Xiao
,
Y.
,
Ming
,
P. W.
,
Hou
,
M.
,
Yi
,
B.
, and
Shao
,
Z. G.
,
2009
, “
The Critical Pressure Drop for the Purge Process in the Anode of a Fuel Cell
,”
J. Power Sources
,
188
(
1
), pp.
163
169
.
8.
Moschandreou
,
T.
, and
Zamir
,
M.
,
1997
, “
Heat Transfer in a Tube With Pulsating Flow and Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2461
2466
.
9.
Yan
,
B. H.
,
Yu
,
L.
, and
Yang
,
Y. H.
,
2010
, “
Heat Transfer With Laminar Pulsating Flow in a Channel or Tube in Rolling Motion
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
1003
1009
.
10.
Hemida
,
H. N.
,
Sabry
,
M. N.
,
Abdel-Rahim
,
A.
, and
Mansour
,
H.
,
2002
, “
Theoretical Analysis of Heat Transfer in Laminar Pulsating Flow
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
1767
1780
.
11.
Mackley
,
M. R.
, and
Stonestreet
,
P.
,
1995
, “
Heat Transfer and Associated Energy Dissipation for Oscillatory Flow in Baffled Tubes
,”
Chem. Sci. Eng.
,
50
(
14
), pp.
2211
2224
.
12.
Nishimura
,
T.
,
Murakami
,
S.
, and
Kawamura
,
Y.
,
1993
, “
Mass Transfer in a Symmetric Sinusoidal Wavy-Walled Channel for Oscillatory Flow
,”
Chem. Eng. Sci.
,
48
(
10
), pp.
1793
1800
.
13.
Watson
,
E. J.
,
1983
, “
Diffusion in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
133
, pp.
233
244
.
14.
Choi
,
W. C.
,
Hwang
,
Y.
,
Cha
,
S. W.
, and
Kim
,
M. S.
,
2010
, “
Experimental Study on Enhancing the Fuel Efficiency of an Anodic Dead-End Mode Polymer Electrolyte Membrane Fuel Cell by Oscillating the Hydrogen
,”
Int. J. Hydrogen Energy
,
35
(
22
), pp.
12469
12479
.
15.
Hwang
,
Y. S.
,
Lee
,
D. Y.
,
Choi
,
J. W.
,
Kim
,
S. Y.
,
Cho
,
S. H.
,
Joonho
,
P.
,
Kim
,
M. S.
,
Jang
,
J. H.
,
Kim
,
S. H.
, and
Cha
,
S.-W.
,
2010
, “
Enhanced Diffusion in Polymer Electrolyte Membrane Fuel Cells Using Oscillating Flow
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3676
3683
.
16.
Moçotéguy
,
P.
,
Druart
,
F.
,
Bultel
,
Y.
,
Besse
,
S.
, and
Rakotondrainibe
,
A.
,
2007
, “
Monodimensional Modeling and Experimental Study of the Dynamic Behavior of Proton Exchange Membrane Fuel Cell Stack Operating in Dead-End Mode
,”
J. Power Sources
,
167
(
2
), pp.
349
357
.
17.
Joshi
,
C. H.
, and
Kamm
,
R. D.
,
1983
, “
An Experimental Study of Gas Exchange in Laminar Oscillatory Flow
,”
J. Fluid Mech.
,
133
, pp.
245
254
.
18.
Aris
,
R.
,
1956
, “
On the Dispersion of a Solute in a Fluid Flowing Through a Tube
,”
Proc. R. Soc. London, Ser. A
,
235
(
1200
), pp.
67
77
.
19.
Taylor
,
G.
,
1953
, “
Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube
,”
Proc. R. Soc. London, Ser. A
,
219
(
1137
), pp.
186
203
.
20.
Harris
,
H. G.
, and
Goren
,
S. L.
,
1967
, “
Axial Diffusion in a Cylinder With Pulsed Flow
,”
Chem. Eng. Sci.
,
22
(
12
), pp.
1571
1576
.
21.
Zhang
,
M. Y.
,
2010
,
Fluid Mechanics
,
Higher Education Press
,
Beijing
, Chap. 9.
You do not currently have access to this content.