In order to develop a predictive model of real cell performance, firm relationships and assumptions need to be established for the definition of the physical and microstructure parameters for solid oxide fuel cells (SOFCs). This study explores the correlations of microstructure parameters from a microscale level, together with mass transfer and electrochemical reactions inside the electrodes, providing a novel approach to predict SOFC performance numerically. Based on the physical connections and interactions of microstructure parameters, two submodel correlations (i.e., porosity–tortuosity and porosity–particle size ratio) are proposed. Three experiments from literature are selected to facilitate the validation of the numerical results with experimental data. In addition, a sensitivity analysis is performed to investigate the impact of the adopted submodel correlations to the SOFC performance predictions. Normally, the microstructural inputs in the numerical model need to be measured by experiments in order to test the real cell performance. By adopting the two submodel correlations, the simulation can be performed without obtaining relatively hard-to-measure microstructural parameters such as tortuosity and particle size, yet still accurately mimicking a real-world well-structured SOFC operation. By accurately and rationally predicting the microstructural parameters, this study can eventually help to aid the experimental and optimization study of SOFC.

References

References
1.
Zhu
,
H.
,
Kee
,
R. J.
,
Janardhanan
, V
. M.
,
Deutschmann
,
O.
, and
Goodwin
,
D. G.
,
2005
, “
Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
152
(
12
), pp.
A2427
A2440
.
2.
Greene
,
E. S.
,
Chiu
,
W. K. S.
, and
Medeiros
,
M. G.
,
2006
, “
Mass Transfer in Graded Microstructure Solid Oxide Fuel Cell Electrodes
,”
J. Power Sources
,
161
(
1
), pp.
225
231
.
3.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
,
2007
, “
Micro-Scale Modelling of Solid Oxide Fuel Cells With Micro-Structurally Graded Electrodes
,”
J. Power Sources
,
168
(
2
), pp.
369
378
.
4.
Chan
,
S. H.
, and
Xia
,
Z. T.
,
2001
, “
Anode Micro Model of Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
,
148
(
4
), pp.
A388
A394
.
5.
Chan
,
S.
,
Khor
,
K.
, and
Xia
,
Z.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
(
1
), pp.
130
140
.
6.
Bouvard
,
D.
, and
Lange
,
F. F.
,
1991
, “
Relation Between Percolation and Particle Coordination in Binary Power Mixture
,”
Acta Metall. Mater.
,
39
(
12
), pp.
3083
3090
.
7.
Costamagna
,
P.
,
Costa
,
P.
, and
Antonucci
,
V.
,
1998
, “
Micro-Modeling of Solid Oxide Fuel Cell Electrodes
,”
Electrochim. Acta
,
43
(
3–4
), pp.
375
394
.
8.
Matyka
,
M.
,
Khalili
,
A.
, and
Koza
,
Z.
,
2008
, “
Tortuosity-Porosity Relation in the Porous Media Flow
,”
Phys. Rev. E
,
79
, p.
026306
.
9.
Currie
,
J. A.
,
1960
, “
Gaseous Diffusion in Porous Media. Part 2—Dry Granular Materials
,”
Br. J. Appl. Phys.
,
11
(
8
), pp.
318
324
.
10.
Dias
,
R.
,
Teixeira
,
J.
,
Mota
,
M.
, and
Yelshin
,
A.
,
2006
, “
Tortuosity Variation in a Low Density Binary Particulate Bed
,”
Sep. Purif. Technol.
,
51
(
2
), pp.
180
184
.
11.
German
,
R. M.
,
1989
,
Particle Packing Characteristics
,
Metal Powder Industry
, Princeton, NJ.
12.
Dias
,
R. P.
,
Teixeira
,
J. A.
,
Mota
,
M. G.
, and
Yelshin
,
A. I.
,
2004
, “
Particulate Binary Mixtures: Dependence of Packing Porosity on Particle Size Ratio
,”
Ind. Eng. Chem. Res.
,
43
(
24
), pp.
7912
7919
.
13.
O’Hayre
,
R.
,
Cha
,
S.-W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2009
,
Fuel Cell Fundamentals
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
14.
Lee
,
W. Y.
,
Wee
,
D.
, and
Ghoniem
,
A. F.
,
2009
, “
An Improved One-Dimensional Membrane-Electrode Assembly Model to Predict the Performance of Solid Oxide Fuel Cell Including the Limiting Current Density
,”
J. Power Sources
,
186
(
2
), pp.
417
427
.
15.
Pollard
,
W. G.
, and
Present
,
R. D.
,
1948
, “
On Gaseous Self-Diffusion in Long Capillary Tubes
,”
Phys. Rev.
,
73
(
7
), pp.
762
774
.
16.
Nam
,
J. H.
, and
Jeon
,
D. H.
,
2006
, “
A Comprehensive Micro-Scale Model for Transport and Reaction in Intermediate Temperature Solid Oxide Fuel Cells
,”
Electrochim. Acta
,
51
(
17
), pp.
3446
3460
.
17.
Berger
,
C.
,
1968
,
Handbook of Fuel Cell Technology
,
Prentice-Hall
, Upper Saddle River, NJ.
18.
Yerazunis
,
S.
,
Cornell
,
S. W.
, and
Wintner
,
B.
,
1965
, “
Dense Random Packing of Binary Mixtures of Spheres
,”
Nature
,
207
(4999), pp.
835
837
.
19.
Jiang
,
S. P.
,
Wang
,
W.
, and
Zhen
,
Y. D.
,
2005
, “
Performance and Electrode Behaviour of Nano-YSZ Impregnated Nickel Anodes Used in Solid Oxide Fuel Cells
,”
J. Power Sources
,
147
(
1–2
), pp.
1
7
.
20.
Kim
,
S.
,
Moon
,
H.
,
Hyun
,
S.
,
Moon
,
J.
,
Kim
,
J.
, and
Lee
,
H.
,
2006
, “
Performance and Durability of Ni-Coated YSZ Anodes for Intermediate Temperature Solid Oxide Fuel Cells
,”
Solid State Ionics
,
177
(
9
), pp.
931
938
.
21.
Jiang
,
S. P.
,
2003
, “
A Comparative Study of Fabrication and Performance of Ni/3 mol. % Y2O3 ZrO2 and Ni/8 mol. % Y2O3 ZrO2 Cermet Electrodes
,”
J. Electrochem. Soc.
,
150
(
11
), pp.
E548
E559
.
You do not currently have access to this content.