Due to the tight coupling of physical processes inside solid oxide fuel cells (SOFCs), efficient control of these devices depends largely on the proper pairing of controlled and manipulated variables. The present study investigates the uncontrolled, dynamic behavior of an SOFC stack that is intended for use in a hybrid SOFC-gas turbine (GT) system. A numerical fuel cell model is developed based on charge, species mass, energy, and momentum balances, and an equivalent circuit is used to combine the fuel cell's irreversibilities. The model is then verified on electrochemical, mass, and thermal timescales. The open-loop response of the average positive electrode-electrolyte-negative electrode (PEN) temperature, fuel utilization, and SOFC power to step changes in the inlet fuel flow rate, current density, and inlet air flow rate is simulated on different timescales. Results indicate that manipulating the current density is the quickest and most efficient way to change the SOFC power. Meanwhile, manipulating the fuel flow is found to be the most efficient way to change the fuel utilization. In future work, it is recommended that such control strategies be further analyzed and compared in the context of a complete SOFC-GT system model.

References

References
1.
Campanari
,
S.
,
2000
, “
Full Load and Part-Load Performance Prediction for Integrated SOFC and Microturbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
239
246
.10.1115/1.483201
2.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
,
2002
, “
Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant
,”
J. Power Sources
,
109
(
1
), pp.
111
120
.10.1016/S0378-7753(02)00051-4
3.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
,
2003
, “
Modelling for Part-Load Operation of Solid Oxide Fuel Cell-Gas Turbine Hybrid Power Plant
,”
J. Power Sources
,
114
(
2
), pp.
213
227
.10.1016/S0378-7753(02)00613-4
4.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
,
2003
, “
Multi-Level Modeling of SOFC–Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
,
28
(
8
), pp.
889
900
.10.1016/S0360-3199(02)00160-X
5.
Martinez
,
A. S.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
2012
, “
Feasibility Study for SOFC-GT Hybrid Locomotive Power: Part I. Development of a Dynamic 3.5 MW SOFC-GT FORTRAN Model
,”
J. Power Sources
,
213
, pp.
203
217
.10.1016/j.jpowsour.2012.04.024
6.
Liese
,
E. A.
,
Ferrari
,
M. L.
,
Van Osdol
,
J.
,
Tucker
,
D.
, and
Gemmen
,
R. S.
,
2008
, “
Modeling of Combined SOFC and Turbine Power Systems
,”
Modeling Solid Oxide Fuel Cells: Methods, Procedures and Techniques
, Vol.
1
,
R.
Bove
, and
S.
Ubertini
, eds.,
Springer Science+Business Media, B.V.
,
Dordrecht, The Netherlands
, pp.
239
268
.
7.
Parker
,
D. S.
,
2003
, “
Research Highlights From a Large Scale Residential Monitoring Study in a Hot Climate
,”
Energy Build.
,
35
(
9
), pp.
863
876
.10.1016/S0378-7788(02)00244-X
8.
Collinge
,
W. O.
,
2014
, University of Pittsburgh, Pittsburgh, PA, personal communication.
9.
National Action Plan for Energy Efficiency
,
2008
, “
Sector Collaborative on Energy Efficiency Accomplishments and Next Steps
,” ICF International, pp. 3-1–3-5.
10.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
,
138
(
1–2
), pp.
120
136
.10.1016/j.jpowsour.2004.06.040
11.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2005
, “
Anode-Supported Intermediate-Temperature Direct Internal Reforming Solid Oxide Fuel Cell: II. Model-Based Dynamic Performance and Control
,”
J. Power Sources
,
147
(
1–2
), pp.
136
147
.10.1016/j.jpowsour.2005.01.017
12.
Bhattacharyya
,
D.
,
Rengaswamy
,
R.
, and
Finnerty
,
C.
,
2009
, “
Dynamic Modeling and Validation Studies of a Tubular Solid Oxide Fuel Cell
,”
Chem. Eng. Sci.
,
64
(
9
), pp.
2158
2172
.10.1016/j.ces.2008.12.040
13.
Wang
,
C.
, and
Nehrir
,
M. H.
,
2007
, “
A Physically Based Dynamic Model for Solid Oxide Fuel Cells
,”
IEEE Trans. Energy Conv.
,
22
(
4
), pp.
887
897
.10.1109/TEC.2007.895468
14.
Mueller
,
F.
,
Gaynor
,
R.
,
Auld
,
A. E.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
G. S.
,
2008
, “
Synergistic Integration of a Gas Turbine and Solid Oxide Fuel Cell for Improved Transient Capability
,”
J. Power Sources
,
176
(
1
), pp.
229
239
.10.1016/j.jpowsour.2007.10.081
15.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
,
2006
, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
,
158
(
1
), pp.
303
315
.10.1016/j.jpowsour.2005.09.010
16.
Leucht
,
F.
,
Bessler
,
W. G.
,
Kallo
,
J.
,
Friedrich
,
K. A.
, and
Müller-Steinhagen
,
H.
,
2011
, “
Fuel Cell System Modeling for Solid Oxide Fuel Cell/Gas Turbine Hybrid Power Plants. Part I: Modeling and Simulation Framework
,”
J. Power Sources
,
196
(
3
), pp.
1205
1215
.10.1016/j.jpowsour.2010.08.081
17.
Braun
,
R. J.
,
2002
, “
Optimal Design and Operation of Solid Oxide Fuel Cell Systems for Small-Scale Stationary Applications
,” Ph.D. thesis, University of Wisconsin-Madison, Madison, WI.
18.
Matsuzaki
,
Y.
, and
Yasuda
,
I.
,
2000
, “
Electrochemical Oxidation of H2 and CO in a H2–H2O–CO–CO2 System at the Interface of a Ni–YSZ Cermet Electrode and YSZ Electrolyte
,”
J. Electrochem. Soc.
,
147
(
5
), pp.
1630
1635
.10.1149/1.1393409
19.
Larminie
,
J.
, and
Dicks
,
A.
,
2003
,
Fuel Cell Systems Explained
,
Wiley
,
Chichester, UK
.
20.
O'Hayre
,
R. P.
,
Cha
,
S.-W.
,
Colella
,
W. G.
, and
Prinz
,
F. B.
,
2009
,
Fuel Cell Fundamentals
,
Wiley
,
Hoboken, NJ
.
21.
Costamagna
,
P.
, and
Honegger
,
K.
,
1998
, “
Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,”
J. Electrochem. Soc.
,
145
(
11
), pp.
3995
4007
.10.1149/1.1838904
22.
Costamagna
,
P.
,
Selimovic
,
A.
,
Del Borghi
,
M.
, and
Agnew
,
G.
,
2004
, “
Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell (IP-SOFC)
,”
Chem. Eng. J.
,
102
(
1
), pp.
61
69
.10.1016/j.cej.2004.02.005
23.
Ubertini
,
S.
, and
Bove
,
R.
,
2008
, “
Mathematical Models: A General Overview
,”
Modeling Solid Oxide Fuel Cells: Methods, Procedures and Techniques
, Vol.
1
,
R.
Bove
, and
S.
Ubertini
, eds.,
Springer Science+Business Media, B.V.
,
Dordrecht, The Netherlands
, pp.
51
93
.
24.
Achenbach
,
E.
,
1994
, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
,
49
(
1–3
), pp.
333
348
.10.1016/0378-7753(93)01833-4
25.
Mogensen
,
M.
, and
Lindegaard
,
T.
,
1993
, “
The Kinetics of Hydrogen Oxidation on a Ni-YSZ SOFC Electrode at 1000 °C
,”
Solid Oxide Fuel Cells III
(
The Electrochemical Society Proceedings Series
),
S. C.
Singal
and
T.
Iwahara
, eds., Electrochemical Society, Pennington, NJ, pp. 484–493.
26.
Mogensen
,
M.
,
1993
, “
Electrode Kinetics of SOFC Anodes and Cathodes
,” High Temperature Electrochemical Behaviour of Fast Ion and Mixed Conductors,
14th Risø International Symposium on Material Science
,
Risø National Laboratory
,
Roskilde, Denmark
, pp.
117
135
.
27.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
28.
Cussler
,
E. L.
,
1997
,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University Press
,
Cambridge, UK
, p.
173
.
29.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
(
1–2
), pp.
130
140
.10.1016/S0378-7753(00)00556-5
30.
Mills
,
A. F.
,
2001
,
Mass Transfer
,
Prentice-Hall Inc.
,
Upper Saddle River, NJ
, pp.
68
69
.
31.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
,
Wiley
,
New York
, pp.
526
527
.
32.
Koide
,
H.
,
Someya
,
Y.
,
Yoshida
,
T.
, and
Maruyama
,
T.
,
2000
, “
Properties of Ni/YSZ Cermet as Anode for SOFC
,”
Solid State Ionics
,
132
(
3–4
), pp.
253
260
.10.1016/S0167-2738(00)00652-4
33.
Nehrir
,
M. H.
, and
Wang
,
C.
,
2009
,
Modeling and Control of Fuel Cells: Distributed Generation Applications
,
Wiley
,
Hoboken, NJ
, pp.
53
55
.
34.
Wang
,
C.
,
Nehrir
,
M. H.
, and
Shaw
,
S. R.
,
2005
, “
Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits
,”
IEEE Trans. Energy Conv.
,
20
(
2
), pp.
442
451
.10.1109/TEC.2004.842357
35.
Esfandiari
,
R. S.
, and
Lu
,
B.
,
2010
,
Modeling and Analysis of Dynamic Systems
,
Taylor and Francis
,
Boca Raton, FL
.
36.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2011
,
Fundamentals of Engineering Thermodynamics
,
Wiley
,
Hoboken, NJ
, p.
854
.
37.
Achenbach
,
E.
, and
Riensche
,
E.
,
1994
, “
Methane/Steam Reforming Kinetics for Solid Oxide Fuel Cells
,”
J. Power Sources
,
52
(
2
), pp.
283
288
.10.1016/0378-7753(94)02146-5
38.
Treybal
,
R. E.
,
1980
,
Mass-Transfer Operations
,
McGraw-Hill
,
New York
, pp.
29
30
.
39.
Bossel
,
U. G.
,
1992
, “
Facts & Figures: Final Report on SOFC Data
,” International Energy Agency and Swiss Federal Office of Energy, Berne, Switzerland.
40.
Bhattacharyya
,
D.
, and
Rengaswamy
,
R.
,
2009
, “
A Review of Solid Oxide Fuel Cell (SOFC) Dynamic Models
,”
Ind. Eng. Chem. Res.
,
48
(
13
), pp.
6068
6086
.10.1021/ie801664j
41.
Jia
,
J.
,
Jiang
,
R.
,
Shen
,
S.
, and
Abudula
,
A.
,
2008
, “
Effect of Operation Parameters on Performance of Tubular Solid Oxide Fuel Cell
,”
AIChE J.
,
54
(
2
), pp.
554
564
.10.1002/aic.11372
42.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Advances in Heat Transfer
, Supplement I: Laminar Flow Forced Convection in Ducts,
Academic Press
,
New York
, pp.
199
203
.
43.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
44.
Iora
,
P.
,
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2005
, “
Comparison of Two IT DIR-SOFC Models: Impact of Variable Thermodynamic, Physical, and Flow Properties. Steady-State and Dynamic Analysis
,”
Chem. Eng. Sci.
,
60
(
11
), pp.
2963
2975
.10.1016/j.ces.2005.01.007
45.
White
,
F.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
46.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2010
,
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill
,
New York
, p.
345
.
47.
Kee
,
R. J.
,
Korada
,
P.
,
Walters
,
K.
, and
Pavol
,
M.
,
2002
, “
A Generalized Model of the Flow Distribution in Channel Networks of Planar Fuel Cells
,”
J. Power Sources
,
109
(
1
), pp.
148
159
.10.1016/S0378-7753(02)00090-3
48.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
, pp.
35
38
.
49.
Achenbach
,
E.
,
1996
, “
Annex II: Modelling and Evaluation of Advanced Solid Oxide Fuel Cells: SOFC Stack Modelling (Final Report of Activity A2)
,” International Energy Agency, Germany.
50.
Rohr
,
F. J.
, ABB Research Center, Heidelberg, Germany, personal communication.
51.
Fergus
,
J. W.
,
2005
, “
Sealants for Solid Oxide Fuel Cells
,”
J. Power Sources
,
147
(
1–2
), pp.
46
57
.10.1016/j.jpowsour.2005.05.002
52.
Judkins
,
R. R.
,
Singh
,
P.
, and
Sikka
,
V. K.
,
2000
, “
Iron Aluminide Alloy Container for Solid Oxide Fuel Cells
,” U.S. Patent No. US6114058 A.
53.
Burt
,
A. C.
,
Celik
,
I. B.
,
Gemmen
,
R. S.
, and
Smirnov
,
A. V.
,
2004
, “
A Numerical Study of Cell-to-Cell Variations in a SOFC Stack
,”
J. Power Sources
,
126
(
1–2
), pp.
76
87
.10.1016/j.jpowsour.2003.08.034
54.
Celik
,
I. B.
, and
Pakalapati
,
S. R.
,
2008
, “
From a Single Cell to a Stack Modeling
,”
Modeling Solid Oxide Fuel Cells: Methods, Procedures and Techniques
, Vol.
1
,
R.
Bove
, and
S.
Ubertini
, eds.,
Springer Science+Business Media, B.V.
,
Dordrecht, The Netherlands
, pp.
123
182
.
55.
Goldstein
,
L.
,
Hedman
,
B.
,
Knowles
,
D.
,
Freedman
,
S. I.
,
Woods
,
R.
, and
Schweizer
,
T.
,
2003
, “
Gas-Fired Distributed Energy Resource Technology Characterizations (Microturbine Systems)
,” Gas Research Institute and the National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-620-34783.
56.
Chapra
,
S. C.
, and
Canale
,
R. P.
,
2010
,
Numerical Methods for Engineers
,
McGraw-Hill
,
New York
.
57.
Klein
,
S. A.
,
2014
, “
engineering equation solver (EES)
,” V9.207, V9.715, F-Chart Software, Madison, WI.
You do not currently have access to this content.