Yttria-stabilized zirconia (YSZ) thin films were deposited by pulsed laser deposition (PLD) at laser repetition frequencies of 10–50 Hz. Controlling the laser repetition frequency can achieve high deposition rate of YSZ, but high deposition rate at high laser repetition frequency can adversely affect the crystallinity of the resulting film. In the present work, X-ray diffraction (XRD) of YSZ thin films deposited at 10–50 Hz unexpectedly indicated no significant differences. Well-crystallized YSZ thin films were obtained for all laser repetition frequencies. This result may be due to a sufficient substrate temperature of 1000 K during processing. The oxide-ion conductivity of each thin film was comparable to that of bulk YSZ. Only minor differences in Y2O3 content, residual stress, grain size, and grain-boundary width were observed among the films. We concluded that similar quality YSZ thin films were obtained at all deposition frequencies. Oxide-ion conductivity was affected by the temperature at which the substrate was deposited. The YSZ thin films deposited at 900 K and 1000 K showed similar oxide-ion conductivity and films deposited at 800 K showed lower oxide-ion conductivity. This difference could perhaps be due to narrow grain-boundary width. The YSZ thin film with highest oxide-ion conductivity was fabricated at an intermediate substrate temperature of 900 K with a deposition rate of 86 nm·min−1 at 50 Hz, without additional high-temperature annealing greater than 1273 K. The YSZ growth rates were faster than the rates for other gas-phase methods such as midfrequency and DC sputtering.

References

References
1.
Steele
,
B. C. H.
,
1999
, “
Running on Natural Gas
,”
Nature
,
400
, pp.
619
621
.10.1038/23144
2.
Minh
,
N. Q.
,
2004
, “
Solid Oxide Fuel Cell Technology-Features and Applications
,”
Solid State Ionics
,
174
(
1–4
), pp.
271
277
.10.1016/j.ssi.2004.07.042
3.
Bove
,
R.
, and
Ubertini
,
S.
,
2008
,
Modeling Solid Oxide Fuel Cells. Methods, Procedures and Techniques
,
Springer
,
New York
.
4.
de Souza
,
S.
,
Visco
,
S. J.
, and
de Jonghe
,
L. C.
,
1997
, “
Thin-Film Solid Oxide Fuel Cell With High Performance at Low Temperature
,”
Solid State Ionics
,
98
(
1–2
), pp.
57
61
.10.1016/S0167-2738(96)00525-5
5.
Will
,
J.
,
Mitterdorfer
,
A.
,
Kleinlogel
,
C.
,
Perednis
,
D.
, and
Gauckler
,
L. J.
,
2000
, “
Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells
,”
Solid State Ionics
,
131
(
1–2
), pp.
79
96
.10.1016/S0167-2738(00)00624-X
6.
Leng
,
Y. J.
,
Chan
,
S. H.
,
Khor
,
K. A.
, and
Jiang
,
S. P.
,
2004
, “
Performance Evaluation of Anode-Supported Solid Oxide Fuel Cells With Thin Film YSZ Electrolyte
,”
Int. J Hydrogen Energy
,
29
(
10
), pp.
1025
1033
.10.1016/j.ijhydene.2004.01.009
7.
Bieberle-Hütter
,
A.
,
Beckel
,
D.
,
Infortuna
,
A.
,
Muecke
,
U. P.
,
Rupp
,
J. L. M.
,
Gauckler
,
L. J.
,
Rey-Mermet
,
S. R.
,
Muralt
,
P.
,
Bieri
,
N. R.
,
Hotz
,
N.
,
Stutz
,
M. J.
,
Poulikakos
,
D.
,
Heeb
,
P.
,
Müller
,
P.
,
Bernard
,
A.
,
Gmür
,
R.
, and
Hocker
,
T.
,
2008
, “
A Micro-Solid Oxide Fuel Cell System as Battery Replacement
,”
J. Power Sources
,
177
(
1
), pp.
123
130
.10.1016/j.jpowsour.2007.10.092
8.
Meier
,
L. P.
,
Urech
,
L.
, and
Gauckler
,
L. J.
,
2004
, “
Tape Casting of Nanocrystalline Ceria Gadolinia Powder
,”
J. Eur. Ceram. Soc.
,
24
(
15–16
), pp.
3753
3758
.10.1016/j.jeurceramsoc.2004.01.002
9.
Wu
,
W.-C.
,
Huang
,
J.-T.
, and
Chiba
,
A.
,
2010
, “
Synthesis and Properties of Samaria-Doped Ceria Electrolyte for IT-SOFCs by EDTA-Citrate Complexin
,”
J. Power Sources
,
195
(
18
), pp.
5868
5874
.10.1016/j.jpowsour.2009.12.098
10.
Steele
,
B. C. H.
,
2000
, “
Appraisal of Ce1−y Gdy O2−y/2 Electrolytes for IT-SOFC Operation at 500 °C
,”
Solid State Ionics
,
129
(
1–4
), pp.
95
110
.10.1016/S0167-2738(99)00319-7
11.
Kim
,
S. D.
,
Hyun
,
S. H.
,
Moon
,
J.
,
Kim
,
J.-H.
, and
Song
,
R. H.
,
2005
, “
Fabrication and Characterization of Anode-Supported Electrolyte Thin Films for Intermediate Temperature Solid Oxide Fuel Cells
,”
J. Power Sources
,
139
(
1–2
), pp.
67
72
.10.1016/j.jpowsour.2004.07.013
12.
Gaudon
,
M.
,
Laberty-Robert
,
Ch.
,
Ansart
,
F.
, and
Stevens
,
P.
,
2006
, “
Thick YSZ Films Prepared Via a Modified Sol–Gel Route: Thickness Control (8–80 μm)
,”
J. Eur. Ceram. Soc.
,
26
(
15
), pp.
3153
3160
.10.1016/j.jeurceramsoc.2005.09.026
13.
Otani
,
M.
,
Tsukui
,
S.
,
Yoshida
,
K.
,
Umezaki
,
Y.
, and
Mukai
,
T.
,
2010
, “
Fabrication of Gd0.5 Sr0.5 CoO3 Film for SOFC Cathode by Pulsed Laser Deposition
,”
Solid State Ionics
,
180
(
40
), pp.
1667
1671
.10.1016/j.ssi.2009.10.010
14.
Koep
,
E.
,
Jin
,
C.
,
Haluska
,
M.
,
Das
,
R.
,
Narayan
,
R.
,
Sandhage
,
K.
,
Snyder
,
R.
, and
Liu
,
M.
,
2006
, “
Microstructure and Electrochemical Properties of Cathode Materials for SOFCs Prepared Via Pulsed Laser Deposition
,”
J. Power Sources
,
161
(
1
), pp.
250
255
.10.1016/j.jpowsour.2006.03.060
15.
Mukai
,
T.
,
Tsukui
,
S.
,
Yoshida
,
K.
,
Adachi
,
M.
, and
Goretta
,
K. C.
,
2013
, “
Influence of Thin Films Structure of Gd0.5 Sr0.5 CoO3Cathode on Impedance Spectroscopy
,”
ECS Trans.
,
57
(
1
), pp.
1885
1891
.10.1149/05701.1885ecst
16.
Watanabe
,
T.
,
Kuriki
,
R.
,
Iwai
,
H.
,
Muroga
,
T.
,
Miyata
,
S.
,
Ibi
,
A.
,
Yamada
,
Y.
, and
Shiohara
,
Y.
,
2005
, “
High Rate Deposition by PLD of YBCO Films for Coated Conductors
,”
IEEE Trans. Appl. Supercond.
,
15
(
2
), pp.
2566
2569
.10.1109/TASC.2005.847653
17.
Yamada
,
Y.
,
Watanabe
,
T.
,
Muroga
,
T.
,
Miyata
,
S.
,
Iwai
,
H.
,
Ibi
,
A.
,
Shiohara
,
Y.
,
Katoh
,
T.
, and
Hirayama
,
T.
,
2005
, “
Rapid Production of Buffered Substrates and Long Length Coated Conductor Development Using IBAD, PLD Methods and “Self-Epitaxial” Ceria Buffer
,”
IEEE Trans. Appl. Supercond.
,
15
(
2
), pp.
2600
2603
.10.1109/TASC.2005.847666
18.
Yamada
,
Y.
,
Ibi
,
A.
,
Fukushima
,
H.
,
Kuriki
,
R.
,
Miyata
,
S.
,
Takahashi
,
K.
,
Kobayashi
,
H.
,
Ishida
,
S.
,
Konishi
,
M.
,
Kato
,
T.
,
Hirayama
,
T.
, and
Shiohara
,
Y.
,
2006
, “
Towards The Practical PLD-IBAD Coated Conductor Fabrication – Long Wire, High Production Rate and Jc Enhancement in a Magnetic Field
,”
Physica C
,
445–448
(), pp.
504
508
.
19.
Usoskin
,
A.
,
Knoke
,
J.
,
Garcia-Moreno
,
F.
,
Issaev
,
A.
,
Dzick
,
J.
,
Sievers
,
S.
, and
Freyhardt
,
H. C.
,
2001
, “
Large-Area HTS-Coated Stainless Steel Tapes With High Critical Currents
,”
IEEE Trans. Appl. Supercond.
,
11
(
1
), pp.
3385
3388
.10.1109/77.919789
20.
Mukai
,
T.
,
Tsukui
,
S.
,
Yoshida
,
K.
,
Yamaguchi
,
S.
,
Hatayama
,
R.
,
Adachi
,
M.
,
Ishibashi
,
H.
,
Kakehi
,
Y.
,
Satoh
,
K.
,
Kusaka
,
T.
, and
Goretta
,
K. C.
,
2013
, “
Fabrication of Y2O3 –Doped Zirconia/Gadolinia-Doped Ceria Bilayer Electrolyte Thin Film SOFC Cells of SOFCs by Single-Pulsed Laser Deposition Processing
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
6
), p.
061006
.10.1115/1.4025064
21.
Zhaoyang
,
W.
,
Liyuan
,
S.
, and
Lizhong
,
H.
,
2010
, “
Effect of Laser Repetition Frequency on the Structural and Optical Properties of ZnO Thin Films by PLD
,”
Vacuum
,
85
(
3
), pp.
397
399
.10.1016/j.vacuum.2010.07.015
22.
Aoki
,
M.
,
Chiang
,
Y.-M.
,
Kosaki
,
I.
,
Lee
,
L. J.-R.
,
Tuller
,
H.
, and
Liu
,
Y.
,
1996
, “
Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia
,”
J. American Ceramic Society
,
79
(
5
), pp.
1169
1180
.10.1111/j.1151-2916.1996.tb08569.x
23.
Trassin
,
M.
,
Viart
,
N.
,
Ulhaq-Bouillet
,
C.
,
Versini
,
G.
,
Barre
,
S.
,
Leuvrey
,
C.
, and
Pourroy
,
G.
,
2009
, “
Ultraflat Monocrystalline Pt (111) Electrodes
,”
J. Appl. Phys.
,
105
(
10
), p.
106101
.10.1063/1.3117528
24.
Rodrigo
,
K.
,
Knudsen
,
J.
,
Pryds
,
N.
,
Schou
,
J.
, and
Linderoth
,
S.
,
2007
, “
Characterization of Yttria-Stabilized Zirconia Thin Films Grown by Pulsed Laser Deposition (PLD) on Various Substrates
,”
Appl. Surf. Sci.
,
254
(
4
), pp.
1338
1342
.10.1016/j.apsusc.2007.07.194
25.
Gerstl
,
M.
,
Navickas
,
E.
,
Friedbacher
,
G.
,
Kubel
,
F.
,
Ahrens
,
M.
, and
Fleig
,
J.
,
2011
, “
The Separation of Grain and Grain Boundary Impedance in Thin Yttria Stabilized Zirconia (YSZ) Layers
,”
Solid State Ionics
,
185
(
1
), pp.
32
41
.10.1016/j.ssi.2011.01.008
26.
Heiroth
,
S.
,
Lippert
,
T.
,
Wokaun
,
A.
,
Döbeli
,
M.
,
Ruppc
,
J. L. M.
,
Scherrer
,
B.
, and
Gauckler
,
L. J.
,
2010
, “
Yttria-Stabilized Zirconia Thin Films by Pulsed Laser Deposition: Microstructural and Compositional Control
,”
J. Eur. Ceram. Soc.
,
30
(
2
), pp.
489
495
.10.1016/j.jeurceramsoc.2009.06.012
27.
Sillassen
,
M.
,
Eklund
,
P.
,
Sridharan
,
M.
,
Pryds
,
N.
,
Bonanos
,
N.
, and
Bøttiger
,
J.
,
2009
, “
Ionic Conductivity and Thermal Stability of Magnetron-Sputtered Nanocrystalline Yttria-Stabilized Zirconia
,”
J. Appl. Phys.
,
105
(
10
), p.
104907
.10.1063/1.3130404
28.
Inoue
,
N.
,
Yuasa
,
H.
, and
Okoshi
,
M.
,
2002
, “
TiO2 Thin Films Prepared by PLD for Photocatalytic Applications
,”
Appl. Surf. Sci.
,
197–198
, pp.
393
397
.
29.
Wakiya
,
N.
,
Yoshida
,
M.
,
Kiguchi
,
T.
,
Shinozaki
,
K.
, and
Mizutani
,
N.
,
2002
, “
RF-Magnetron-Sputtered Heteroepitaxial YSZ and CeO2/YSZ/Si(001) Thin Films With Improved Capacitance–Voltage Characteristics
,”
Thin Solid Films
,
411
(
2
), pp.
268
273
.10.1016/S0040-6090(02)00295-X
30.
Hartmanova
,
M.
,
Gmucova
,
K
, and
Thurzo
,
I.
,
2000
, “
Dielectric Properties of Ceria and Yttria-Stabilized Zirconia Thin Films Grown on Silicon Substrates
,”
Solid State Ionics
,
130
(
1–2
), pp.
105
110
.10.1016/S0167-2738(00)00285-X
31.
Wang
,
H.
,
Ji
,
W.
,
Zhang
,
L.
,
Gong
,
Y.
,
Xie
,
B.
,
Jiang
,
Y.
, and
Song
,
Y.
,
2011
, “
Preparation of YSZ Films by Magnetron Sputtering for Anode-Supported SOFC
,”
Solid State Ionics
,
192
(
1
), pp.
413
418
.10.1016/j.ssi.2010.05.022
32.
Hill
,
T.
, and
Huang
,
H.
,
2010
, “
Fabricating Pinhole-Free YSZ Sub-Microthin Films by Magnetron Sputtering for Micro-SOFCs
,”
Int. J. Electrochem.
,
2011
, p.
479203
.
33.
Joo
,
J. H.
, and
Choi
,
G. M.
,
2006
, “
Electrical Conductivity of YSZ Film Grown by Pulsed Laser Deposition
,”
Solid State Ionics
,
177
(
11–12
), pp.
1053
1057
.10.1016/j.ssi.2006.04.008
34.
Bellino
,
M. G.
,
Lamas
,
D. G.
, and
Walsöe de Reca
,
N. E.
,
2006
, “
Enhanced Ionic Conductivity in Nanostructured, Heavily Doped Ceria Ceramics
,”
Adv. Funct. Mater.
,
16
(
1
), pp.
107
113
.10.1002/adfm.200500186
35.
Radhakrishnan
,
R.
,
Virkar
,
A. V.
,
Singhal
,
S. C.
,
Dunham
,
G. C.
, and
Marina
,
O. A.
,
2005
, “
Design, Fabrication and Characterization of a Miniaturized Series-Connected Potentiometric Oxygen Sensor
,”
Sens. Actuators, B
,
105
(
2
), pp.
312
321
.10.1016/j.snb.2004.06.014
36.
Kek
,
D.
,
Panjan
,
P.
,
Wanzenberg
,
E.
, and
Jamnik
,
J.
,
2001
, “
Electrical and Microstructural Investigations of Cermet Anode/YSZ Thin Film Systems
,”
J. Eur. Ceram. Soc.
,
21
(
10–11
), pp.
1861
1865
.10.1016/S0955-2219(01)00131-5
37.
Fergus
,
J. W.
,
2006
, “
Electrolytes for Solid Oxide Fuel Cells
,”
J. Power Sources
,
162
(
1
), pp.
30
40
.10.1016/j.jpowsour.2006.06.062
38.
Araki
,
W.
, and
Arai
,
Y.
,
2010
, “
Oxygen Diffusion in Yttria-Stabilized Zirconia Subjected to Uniaxial Stress
,”
Solid State Ionics
,
181
(
8–10
), pp.
441
446
.10.1016/j.ssi.2010.01.023
39.
Araki
,
W.
,
Imai
,
Y.
, and
Adachi
,
T.
,
2009
, “
Mechanical Stress Effect on Oxygen Ion Mobility in 8 mol% Yttria-Stabilized Zirconia Electrolyte
,”
J. Eur. Ceram. Soc.
,
29
(
11
), pp.
2275
2279
.10.1016/j.jeurceramsoc.2009.01.014
40.
M'Peko
,
J. C.
,
Spavieri
,
D. L.
, Jr.
,
Silva
,
C. L.
,
Fortulan
,
C. A.
,
Souza
,
D. P. F.
, and
Souza
,
M. F.
,
2003
, “
Electrical Properties of Zirconia–Alumina Composites
,”
Solid State Ionics
,
156
(
1–2
), pp.
59
69
.10.1016/S0167-2738(02)00611-2
41.
Chiang
,
Y.-M.
,
Birnie
,
D.
, and
Kingery
,
W. D.
,
1997
,
Physical Ceramics: Principles for Ceramic Science and Engineering
,
Wiley
,
New York
, Chap. 2.
42.
Guo
,
X.
, and
Waser
,
R.
,
2004
, “
Space Charge Concept for Acceptor-Doped Zirconia and Ceria and Experimental Evidences
,”
Solid State Ionics
,
173
(
1–4
), pp.
63
67
.10.1016/j.ssi.2004.07.053
43.
Sommer
,
J.
,
Herzig
,
C.
,
Mayer
,
S.
, and
Gust
,
W.
,
1989
, “
Grain Boundary Self-Diffusion in Silver Bicrystals
,”
Defect Diffus. Forum
,
843
, pp.
66
69
.
44.
Balluffi
,
R. W.
,
1982
, “
Grain Boundary Diffusion Mechanisms in Metals
,”
Metall. Mater. Trans. B
,
13
(
4
), pp.
527
553
.10.1007/BF02650011
You do not currently have access to this content.