For most of the last four decades, the alkaline fuel cell (AFC) has been largely overlooked in favor of the polymer electrolyte membrane fuel cell (PEMFC) and the solid oxide fuel cell (SOFC). However, the persistently high costs and complexities of the PEMFC and the SOFC have led to renewed interest in the AFC in recent times. This work reports the designs of custom test fixtures and electronics instrumentation relevant for AFC electrode testing and system optimization. Features implemented in the designs include a real-time voltage measurement unit (VMU), electronic load circuit, and electrolyte heater system. Validation experiments indicated a close agreement between the VMU’s readings, Nernst equation predictions, and readings from a digital voltmeter. The electrolyte heater system’s temperature measurement module was validated with its ability to replicate a cooling profile of ethanol similar to that obtained from a mercury-in-glass thermometer. Materials selection, design considerations, and fabrication steps for other test station components, such as the button-cell test apparatus and the half-cylinder electrolyte heater, were presented. The test station was used for polarization studies of aluminum-air AFC under different conditions of potassium hydroxide (KOH) electrolyte temperature and concentration. The studies revealed optimum values of electrolyte temperature and concentration for the AFC electrode to be 70 °C and 4 M KOH, respectively.

References

References
1.
Warshay
,
M.
, and
Prokopius
,
P. R.
,
2006
, “
The Fuel Cell in Space: Yesterday, Today and Tomorrow
,” NASA Lewis Research Center, Cleveland, OH, Technical Memorandum No. 102366.
2.
Cook
,
B.
,
2001
,
An Introduction to Fuel Cells and Hydrogen Technology
,
Heliocentris
,
Vancouver, Canada
.
3.
Cifrain
,
M.
, and
Kordesch
,
K.
,
2003
, “
Hydrogen/Oxygen (Air) Fuel Cells With Alkaline Electrolytes
,”
Handbook of Fuel Cells—Fundamentals, Technology and Applications
,
W.
Vielstich
,
A.
Lamm
, and
H. A.
Gasteiger
, eds.,
John Wiley & Sons
,
Chichester, UK
, pp.
267
280
.
4.
Blackledge
,
J.
,
Coyle
,
E.
,
Kennedy
,
D.
,
Schmidt-Walter
,
H.
,
Kohnke
,
H.
,
Sauer
,
G.
,
Schudt
,
S.
,
Hamilton
,
J.
, and
Brunton
,
J.
,
2009
, “
Engineering of a Single Alkaline Fuel Cell Part II: Long Term Operation in Air
,”
J. Electr. Eng.
,
2
(
4
), pp.
33
42
.
5.
AFC Energy
,
2009
, “
Advantages of Alkali Fuel Cells
,” accessed May 30, 2010, http://www.afcenergy.com/technology/advantages-of-alkali-fuel-cells/
6.
Guelzow
,
E.
,
Nor
,
J. K.
,
Nor
,
P. K.
, and
Schulze
,
M.
,
2006
, “
A Renaissance for Alkaline Fuel Cells
,”
Fuel Cell Rev.
,
3
(
1
), pp.
19
25
.
7.
Krewitt
,
W.
, and
Schmid
,
S.
,
2005
,
Fuel Cell Technologies and Hydrogen Production/Distribution Options
,
German Aerospace Centre (DLR)
, Cologne, Germany.
8.
Brushett
,
F. R.
,
Naughton
,
M. S.
,
Wei
,
J.
,
Ng
,
D.
,
Yin
,
L.
, and
Kenis
,
P. J. A.
,
2012
, “
Analysis of Pt/C Electrode Performance in a Flowing Electrolyte Alkaline Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2559
2570
.10.1016/j.ijhydene.2011.10.078
9.
Naughton
,
M. S.
,
Brushett
,
F. R.
, and
Kenis
,
P. J. A.
,
2011
, “
Carbonate Resilience of Flowing Electrolyte-Based Alkaline Fuel Cells
,”
J. Power Sources
,
196
(
4
), pp.
1762
1768
.10.1016/j.jpowsour.2010.09.114
10.
Kordesch
,
K.
, and
Cifrain
,
M.
,
2010
, “
A Comparison Between the Alkaline Fuel Cell (AFC) and the Polymer Electrolyte Membrane (PEM) Fuel Cell
,”
Handbook of Fuel Cells: Fundamentals, Technology and Applications
,
John Wiley & Sons
,
Chichester, UK
.10.1002/9780470974001.f304065
11.
Rajalakshmi
,
N.
, and
Dhathathreyan
,
K. S.
,
2008
,
Present Trends in Fuel Cell Technology Development
,
Nova Publishers
,
New York
, p.
141
.
12.
Bagotsky
,
V. S.
,
2012
,
Fuel Cells: Problems and Solutions
,
John Wiley & Sons
,
Chichester, UK
, p.
406
.10.1002/9781118191323
13.
Yamamura
,
H.
, and
Furuya
,
N.
,
2008
, “
Water Electrolyser Using a Gas Diffusion Electrode
,” 214th Electrochemcial Society Meeting, Honolulu, HI, Oct. 12–17, Abstract No. 37, p.
802
.
14.
Gharibi
,
H.
, and
Mirzaie
,
R. A.
,
2003
, “
Fabrication of Gas-Diffusion Electrodes at Various Pressures and Investigation of Synergistic Effects of Mixed Electrocatalysts on Oxygen Reduction Reaction
,”
J. Power Sources
,
115
(
2
), pp.
194
202
.10.1016/S0378-7753(02)00710-3
15.
Silverman
,
D.
,
2012
, “
Tutorial on Reference Electrodes for Corrosion
,” accessed Apr. 23, 2009, Argentum Solutions, Seymour, CT, http://www.consultrsr.com/resources/ref/refpotls.htm
16.
Research Solutions & Resources
,
2009
, “
The Ag/AgCl Reference Electrode
,” accessed Apr. 23, 2012, http://www.consultrsr.com/resources/ref/agcl.htm
17.
Matthews
,
P.
,
1996
,
Advanced Chemistry
,
Cambridge University Press
,
Cambridge, UK
.
18.
Li
,
Q.
, and
Bjerrum
,
N. J.
,
2002
, “
Aluminium for Energy Storage and Conversion: A Review
,”
J. Power Sources
,
110
(
1
), pp.
1
10
.10.1016/S0378-7753(01)01014-X
19.
Argyropoulos
,
P.
,
Scott
,
K.
,
Shukla
,
A. K.
, and
Jackson
,
C.
,
2003
, “
A Semi-Empirical Model of the Direct Methanol Fuel Cell Performance Part I. Model Development and Verification
,”
J. Power Sources
,
123
(
2
), pp.
190
199
.10.1016/S0378-7753(03)00558-5
20.
O'M Bockris
,
J.
,
Reddy
,
A. K.
, and
Gamboa-Aldeco
,
M.
,
2005
,
Modern Electrochemistry
, Vol. 2,
Springer/Birkhäuser
, New York.
21.
Gabrielli
,
C.
,
Huet
,
F.
, and
Nogueira
,
R.
,
2005
, “
Fluctuations of Concentration Overpotential Generated at Gas-Evolving Electrodes
,”
Electrochim. Acta
,
50
(
18
), pp.
3726
3736
.10.1016/j.electacta.2005.01.019
22.
Lu
,
G.
, and
Wang
,
C. Y.
,
2005
, “
Two-Phase Microfluidics, Heat and Mass Transport in Direct Methanol Fuel Cells
,”
Transport Phenomena in Fuel Cells
,
B.
Sundén
, ed.,
WIT Press
,
Southampton, UK
, pp.
317
358
.10.2495/1-85312-840-6/09
23.
Weinmueller
,
C.
,
Tautschnig
,
G.
,
Hotz
,
N.
, and
Poulikakos
,
D.
,
2010
, “
A Flexible Direct Methanol Micro-Fuel Cell Based on a Metalized, Photosensitive Polymer Film
,”
J. Power Sources
,
195
(
12
), pp.
3849
3857
.10.1016/j.jpowsour.2009.12.092
You do not currently have access to this content.