Driven by the search for the highest theoretical efficiency, several studies have investigated in the last years the adoption of fuel cells (FCs) in the field of power production from natural gas with CO2 capture. Most of the proposed power cycles rely on high temperature FCs, namely, solid oxide FCs (SOFCs) and molten carbonate FCs (MCFCs), based on the concept of hybrid FC plus gas turbine cycles. Accordingly, high temperature FCs are integrated with a simple or modified Brayton cycle. As far as SOFCs are concerned, CO2 can be separated downstream the FC via a range of available technologies, e.g., chemical or physical separation processes, oxy-combustion, and cryogenic methods. Following a literature review on promising plant configurations, this work investigates the potential of adopting an external natural gas conversion section with respect to the plant efficiency. As a reference plant, we considered a power cycle proposed by Adams and Barton (2010, “High-Efficiency Power Production From Natural Gas With Carbon Capture,” J. Power Sources, 195(7), pp. 1971–1983), whose performance is the highest found in literature for SOFC-based power cycles, with 82% LHV electrical efficiency. It is based on a prereforming concept where fuel is reformed ahead the SOFC, which thus works with a high hydrogen content fuel. After reproducing the power cycle with the ideal assumptions proposed by the original authors, as second step, the simulations were focused on revising the power cycle, implementing a complete set of assumptions about component losses and more conservative operating conditions about FC voltage, heat exchangers minimum temperature differences (which were previously neglected), maximum steam temperature (set according to heat recovery steam generator (HRSG) practice), turbomachinery efficiency, component pressure losses, and other adjustments. The simulation also required to design an appropriate heat exchangers network, which turned out to be very complex, instead of relying on the free allocation of heat transfer among all components. Considering the consequent modifications with respect to the original layout, the net electric efficiency changes to around 63% LHV with nearly complete (95%+) CO2 capture, a still remarkable but less attractive value. On the other hand, the power cycle requires a complicated and demanding heat exchangers network and heavily relies on the SOFC performances, not generating a positive power output from the gas turbine loop. Detailed results are presented in terms of energy and material balances of the proposed cycles. All simulations have been carried out with the proprietary code GS, developed by the GECOS group at Politecnico di Milano.

References

References
1.
Hirschenhofer
,
J. H.
,
Staffer
,
D. B.
, and
White
,
J. S.
,
1994
, “
Carbon Dioxide Capture in Fuel Cell Power Systems
,”
International Energy Conversion Engineering Conference
,
New York
, Monterey, CA,
AIAA
Paper No. 94-4148-CP, pp.
1120
1125
.10.2514/6.1994-4148
2.
Wolsky
,
A. M.
,
Daniels
,
E. J.
, and
Jody
,
B. J.
,
1993
, “
Technologies for CO2 Capture From Advanced Power-Generation Systems
,” Energy Systems Division, Argonne National Laboratory, Argonne, IL, Report No. ANL/ES/CP--80346, available at: http://www.osti.gov/scitech/servlets/purl/10177996
3.
Campanari
,
S.
, and
Chiesa
,
P.
,
2000
, “
Potential of Solid Oxide Fuel Cells (SOFC) Based Cycles in Low-CO2 Emission Power Generation
,”
5th International Conference on Greenhouse Gas Control Technologies
(GHGT-5), Cairns, Australia, Aug. 13–16.
4.
Campanari
,
S.
,
2002
, “
Carbon Dioxide Separation From High Temperature Fuel Cell Power Plants
,”
J. Power Sources
,
112
(
1
), pp.
273
289
.10.1016/S0378-7753(02)00395-6
5.
Akai
,
M.
,
Nomuna
,
N.
,
Waku
,
H.
, and
Inoue
,
M.
,
1997
, “
Life-Cycle Analysis of a Fossil-Fuel Power Plant With CO2 Recovery and a Sequestering System
,”
Energy
,
22
(
2–3
), pp.
249
255
.10.1016/S0360-5442(96)00094-1
6.
Damen
,
K.
,
Van Troost
,
M.
,
Faaij
,
A.
, and
Turkenburg
,
W.
,
2006
, “
A Comparison of Electricity and Hydrogen Production Systems With CO2 Capture and Storage. Part A: Review and Selection of Promising Conversion and Capture Technologies
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
215
246
.10.1016/j.pecs.2005.11.005
7.
Liese
,
E.
,
2009
, “
Comparison of Pre-Anode and Post-Anode Carbon Dioxide Separation for IGFC Systems
,”
ASME
Paper No. GT2009-59144. 10.1115/GT2009-59114
8.
Adams
,
T. A.
, and
Barton
,
P. I.
,
2010
, “
High-Efficiency Power Production From Natural Gas With Carbon Capture
,”
J. Power Sources
,
195
(
7
), pp.
1971
1983
.10.1016/j.jpowsour.2009.10.046
9.
Litzinger
,
K. P.
,
Veyo
,
S. E.
,
Shockling
,
L. A.
, and
Lundberg
,
W. L.
,
2005
, “
Comparative Evaluation of SOFC/Gas Turbine Hybrid System Options
,”
ASME
Paper No. GT2005-68909. 10.1115/GT2005-68909
10.
Trasino
,
F.
,
Bozzolo
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2009
, “
Modelling and Performance Analysis of the Rolls-Royce Fuel Cell System Limited 1 MW Plant
,”
ASME
Paper No. GT2009-59328. 10.1115/GT2009-59328
11.
Tsuji
,
T.
,
Yanai
,
N.
,
Fujii
,
K.
,
Miyamoto
,
H.
,
Watabe
,
M.
,
Ishiguro
,
T.
,
Ohtani
,
Y.
, and
Uechi
,
H.
,
2003
, “
Multi-Stage Solid Oxide Fuel Cell–Gas Turbine Combined Cycle Hybrid Power Plant System
,”
ASME
Paper No. GT2003-38391. 10.1115/GT2003-38391
12.
Moller
,
B. F.
,
Arriagada
,
J.
,
Assadi
,
M.
, and
Potts
,
I.
,
2004
, “
Optimisation of an SOFC/GT System With CO2-Capture
,”
J. Power Sources
,
131
(
1–2
), pp.
320
326
.10.1016/j.jpowsour.2003.11.090
13.
Vivanpatarakij
,
S.
,
Laosiripojana
,
N.
,
Kiatkittipong
,
W.
,
Arpornwichanop
,
A.
,
Soottitantawat
,
A.
, and
Assabumrungrat
,
S.
,
2009
, “
Simulation of Solid Oxide Fuel Cell Systems Integrated With Sequential CaO–CO2 Capture Unit
,”
Chem. Eng. J.
,
147
(
2–3
), pp.
336
341
.10.1016/j.cej.2008.11.040
14.
Piroonlerkgul
,
P.
,
Laosiripojana
,
N.
,
Adesina
,
A. A.
, and
Assabumrungrat
,
S.
,
2009
, “
Performance of Biogas-Fed Solid Oxide Fuel Cell Systems Integrated With Membrane Module for CO2 Removal
,”
Chem. Eng. Process.
,
48
(
2
), pp.
672
682
.10.1016/j.cep.2008.08.002
15.
Carson
,
J. L.
,
1995
, “
Thermodynamics of Pressure Swing Adsorption (PSA) in the Recovery of Residual Hydrogen From SOFC Anode Gas
,”
Intersociety Energy Conversation Engineering Conference
,
Orlando
,
FL
, July 30–Aug. 4, pp.
229
234
.
16.
Duan
,
L.
,
Yang
,
Y.
,
He
,
B.
, and
Xu
,
G.
,
2012
, “
Study on a Novel Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle System With CO2 Capture
,”
Int. J. Energy Res.
,
36
(
2
), pp.
139
152
.10.1002/er.1938
17.
Campanari
,
S.
,
Chiesa
,
P.
, and
Manzolini
,
G.
,
2009
, “
CO2 Capture From Combined Cycles Integrated With Molten Carbonate Fuel Cells
,”
Int. J. Greenhouse Gas Control
,
4
(
3
), pp.
441
451
.10.1016/j.ijggc.2009.11.007
18.
Kuramochi
,
T.
,
Turkenburg
,
W.
, and
Faaij
,
A.
,
2011
, “
Competitiveness of CO2 Capture From an Industrial Solid Oxide Fuel Cell Combined Heat and Power System in the Early Stage of Market Introduction
,”
Fuel
,
90
(
3
), pp.
958
973
.10.1016/j.fuel.2010.10.028
19.
Jericha
,
H.
,
Hacker
,
V.
,
Sanz
,
W.
, and
Zotter
,
G.
,
2010
, “
Thermal Steam Power Plant Fired by Hydrogen and Oxygen in Stoichiometric Ratio, Using Fuel Cells and Gas Turbine Cycle Components
,”
ASME
Paper No. GT2010-22282. 10.1115/GT2010-22282
20.
Park
,
S. K.
,
Kim
,
T. S.
,
Sohn
,
J. L.
, and
Lee
,
Y. D.
,
2011
, “
An Integrated Power Generation System Combining Solid Oxide Fuel Cell and Oxy-Fuel Combustion for High Performance and CO2 Capture
,”
Appl. Energy
,
88
(
4
), pp.
1187
1196
.10.1016/j.apenergy.2010.10.037
21.
Riensche
,
E.
,
Achenbach
,
E.
,
Froning
,
D.
,
Haines
,
M. R.
,
Heidug
,
W. K.
,
Lokurlu
,
A.
, and
Von Andrian
,
S.
,
2000
, “
Clean Combined-Cycle SOFC Power Plant—Cell Modelling and Process Analysis
,”
J. Power Sources
,
86
(
1–2
), pp.
404
410
.10.1016/S0378-7753(99)00490-5
22.
Chiesa
,
P.
,
Campanari
,
S.
, and
Manzolini
,
G.
,
2011
, “
CO2 Cryogenic Separation From Combined Cycles Integrated With Molten Carbonate Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10355
10365
.10.1016/j.ijhydene.2010.09.068
23.
Consonni
,
S.
,
Lozza
,
G.
,
Macchi
,
E.
,
Chiesa
,
P.
, and
Bombarda
,
P.
,
1991
, “
Gas-Turbine-Based Advanced Cycles for Power Generation Part A: Calculation Model
,”
International Gas Turbine Conference
,
Yokohama
, Japan, Oct. 27–Nov. 1, Vol.
III
, pp.
201
210
.
24.
Lozza
,
G.
,
1990
, “
Bottoming Steam Cycles for Combined Gas Steam Power Plants: A Theoretical Estimation of Steam Turbine Performance and Cycle Analysis
,”
ASME Cogen Turbo
, New Orleans, LA, Aug. 27–29, pp.
83
92
.
25.
Chiesa
,
P.
,
Consonni
,
S.
,
Kreutz
,
T.
, and
Williams
,
R.
,
2005
, “
Co-Production of Hydrogen, Electricity and CO2 From Coal With Commercially Ready Technology. Part A: Performance and Emissions
,”
Int. J. Hydrogen Energy
,
30
(
7
), pp.
747
767
.10.1016/j.ijhydene.2004.08.002
26.
Campanari
,
S.
, and
Macchi
,
E.
,
1998
, “
Thermodynamic Analysis of Advanced Power Cycles Based Upon Solid Oxide Fuel Cells, Gas Turbines and Rankine Bottoming Cycles
,”
ASME
Paper No. 98-GT-585. 10.1115/98-GT-585
27.
Campanari
,
S.
,
Iora
,
P.
,
Macchi
,
E.
, and
Silva
,
P.
,
2007
, “
Thermodynamic Analysis of Integrated MCFC/Gas Turbine Cycles for Multi-MW Scale Power Generation
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
3
), pp.
308
316
.10.1115/1.2744051
28.
Franco
,
F.
,
Anantharaman
,
R.
,
Bolland
,
O.
,
Booth
,
N.
,
Dorst
,
E. V.
, and
Ekstrom
,
C.
,
2011
, “
European Best Practice Guide for Assessment of CO2 Capture Technologies
,” European Benchmarking Task Force (EBTF), Report No. 213206, available at: http://www.energia.polimi.it/news/D%204_9%20best%20practice%20guide.pdf
29.
Manzolini
,
G.
,
Macchi
,
E.
,
Binotti
,
M.
, and
Gazzani
,
M.
,
2011
, “
Integration of SEWGS for Carbon Capture in Natural Gas Combined Cycle. Part B: Reference Case Comparison
,”
Int. J. Greenhouse Gas Control
,
5
(
2
), pp.
214
225
.10.1016/j.ijggc.2010.08.007
30.
Campanari
,
S.
, and
Iora
,
P.
,
2005
, “
Comparison of Finite Volume SOFC Models for the Simulation of a Planar Cell Geometry
,”
Fuel Cells
,
5
(
1
), pp.
34
51
.10.1002/fuce.200400057
31.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
,
138
(
1–2
), pp.
120
136
.10.1016/j.jpowsour.2004.06.040
32.
Iwai
,
H.
,
Yamamoto
,
Y.
,
Saito
,
M.
, and
Yoshida
,
H.
,
2011
, “
Numerical Simulation of Intermediate-Temperature Direct-Internal-Reforming Planar Solid Oxide Fuel Cell
,”
Energy
,
36
(
4
), pp.
2225
2234
.10.1016/j.energy.2010.03.058
33.
Romano
,
M.
,
2013
, “
Ultra-High CO2 Capture Efficiency in CFB Oxyfuel Power Plants by Calcium Looping Process for CO2 Recovery From Purification Units Vent Gas
,”
Int. J. Greenhouse Gas Control
,
18
, pp.
57
67
.10.1016/j.ijggc.2013.07.002
You do not currently have access to this content.