A nanosized perovskite-type oxide supported on carbon black (perovskite/C) was prepared by the polyvinyl pyrrolidone (PVP) addition method and subsequent mechanical milling with carbon black. Transmission electron microscope (TEM) observation and scanning transmission electron microscope (STEM)–energy dispersive X-ray (EDX) mapping clearly revealed that the oxide prepared by the PVP method was small (ca. 20 nm) and highly dispersed on the carbon support. The oxygen reduction reaction (ORR) activity on the perovskite/C catalyst was investigated with rotating ring-disk electrode (RRDE) measurement in an alkaline solution at 25 °C. The prepared perovskite/C catalyst showed enhanced activity compared to catalysts obtained by the conventional solid state reaction and citrate process; i.e., a positive shift of the onset potential and increased ORR current at a disk electrode. The present catalyst was also associated with decreased ring current.

References

References
1.
Savy
,
M.
,
1968
, “
Oxygen Reduction in Alkaline Solution on Semiconducting Cobalt Oxide Electrodes
,”
Electrochim. Acta
,
3
(
6
), pp.
1359
1376
.10.1016/0013-4686(68)80063-5
2.
Gasteiger
,
H. A.
,
Kocha
,
S. S.
,
Sompalli
,
B.
, and
Wagner
,
F. T.
,
2005
, “
Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs
,”
Appl. Catal., B
,
56
(
1–2
), pp.
9
35
.10.1016/j.apcatb.2004.06.021
3.
Spendelow
,
J. S.
, and
Wieckwski
,
A.
,
2007
, “
Electrocatalysis of Oxygen Reduction and Small Alcohol Oxidation in Alkaline Media
,”
Phys. Chem. Chem. Phys.
,
9
(
21
), pp.
2654
2675
.10.1039/b703315j
4.
Asazawa
,
K.
,
Yamada
,
K.
,
Tanaka
,
H.
,
Oka
,
A.
,
Taniguchi
,
M.
, and
Kobayashi
,
T.
,
2007
, “
A Platinum-Free Zero-Carbon-Emission Easy Fuelling Direct Hydrazine Fuel Cell for Vehicles
,”
Angew. Chem., Int. Ed.
,
46
(
42
), pp.
8024
8027
.10.1002/anie.200701334
5.
Slanac
,
D. A.
,
Lie
,
A.
,
Paulson
,
J. A.
,
Stevenson
,
K. J.
, and
Johnston
,
K. P.
,
2012
, “
Bifunctional Catalysts for Alkaline Oxygen Reduction Reaction Via Promotion of Ligand and Ensemble Effects at Ag/MnOx Nanodomains
,”
J. Phys. Chem. C
,
116
(
20
), pp.
11032
11039
.10.1021/jp3012816
6.
Meadowcroft
,
D. B.
,
1970
, “
Low-Cost Oxygen Electrode Material
,”
Nature
,
226
(
5248
), pp.
847
848
.10.1038/226847a0
7.
Shimizu
,
Y.
,
Uemura
,
K.
,
Matsuda
,
H.
,
Miura
,
N.
, and
Yamazoe
,
N.
,
1990
,”
Bi-Functional Oxygen Electrode Using Large Surface Area La1−xCaxCoO3 for Rechargeable Metal–Air Battery
,”
J. Electrochem. Soc.
,
137
(
11
), pp.
3430
3433
.10.1149/1.2086234
8.
Suntivich
,
J.
,
Gasteiger
,
H. A.
,
Yabuuchi
,
N.
,
Nakanishi
,
H.
,
Goodenough
,
J. B.
, and
Shao-Horn
,
Y.
,
2011
, “
Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal–Air Batteries
,”
Nat. Chem.
,
3
(
8
), pp.
546
550
.10.1038/nchem.1069
9.
Kinoshita
,
K.
,
1988
,
Carbon-Electrochemical and Physicochemical Properties
,
Wiley
,
New York
.
10.
Song
,
C.
, and
Zhang
,
J.
,
2008
, “
Electrocatalytic Oxygen Reduction Reaction
,”
PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications
,
Springer
,
London
, pp.
89
134
.
11.
Poux
,
T.
,
Napolskiy
,
F. S.
,
Dintzer
,
T.
,
Kerangueven
,
G.
,
Istomin
,
S. Y.
,
Tsirlina
,
G. A.
,
Antipov
,
E. V.
, and
Savinova
,
E. R.
,
2012
, “
Dual Role of Carbon in the Catalytic Layers of Perovskite/Carbon Composites for the Electrocatalytic Oxygen Reduction Reaction
,”
Catal. Today
,
189
(
1
), pp.
83
92
.10.1016/j.cattod.2012.04.046
12.
Bursell
,
M.
,
Pirjamali
,
M.
, and
Kiros
,
Y.
,
2002
, “
La0.6Ca0.4CoO3, La0.1Ca0.9MnO3, and LaNiO3 as Bifunctional Oxygen Electrodes
,”
Electrochim. Acta
,
47
(
10
), pp.
1651
1660
.10.1016/S0013-4686(02)00002-6
13.
Thiele
,
D.
, and
Zuttel
,
A.
,
2008
, “
Electrochemical Characterization of Air Electrodes Based on La0.6Sr0.4CoO3 and Carbon Nanotubes
,”
J. Power Sources
,
183
(
2
), pp.
590
594
.10.1016/j.jpowsour.2008.05.042
14.
Hayashi
,
M.
,
Uemura
,
H.
,
Shimanoe
,
K.
,
Miura
,
N.
, and
Yamazoe
,
N.
,
1998
, “
Enhanced Electrocatalytic Activity for Oxygen Reduction Over Carbon-Supported LaMnO3 Prepared by Reverse Micelle Method
,”
Electrochem. Solid-State Lett.
,
1
(
6
), pp.
268
270
.10.1149/1.1390708
15.
Haider
,
M. A.
,
Capizzi
,
A. J.
,
Murayama
,
M.
, and
McIntosh
,
S.
,
2011
, “
Reverse Micelle Synthesis of Perovskite Oxide Nanoparticles
,”
Solid State Ionics
,
196
(
1
), pp.
65
72
.10.1016/j.ssi.2011.06.013
16.
Tulloch
,
J.
, and
Donne
,
S. W.
,
2009
, “
Activity of Perovskite La1−xSrxMnO3 Catalysts Towards Oxygen Reduction in Alkaline Electrolytes
,”
J. Power Sources
,
188
(
2
), pp.
359
366
.10.1016/j.jpowsour.2008.12.024
17.
Yuasa
,
M.
,
Yamazoe
,
N.
, and
Shimanoe
,
K.
,
2011
, “
Durability of Carbon-Supported La-Mn-Based Perovskite-Type Oxides as Oxygen Reduction Catalysts in Strong Alkaline Solution
,”
J. Electrochem. Soc.
,
158
(
4
), pp.
A411
A416
.10.1149/1.3551499
18.
Nagai
,
T.
,
Fujiwara
,
N.
,
Asahi
,
M.
,
Yamazaki
,
S.
,
Siroma
,
Z.
, and
Ioroi
,
T.
,
2014
, “
Synthesis of Nano-Sized Perovskite-Type Oxide With the Use of Polyvinyl Pyrrolidone
,”
J. Asian Ceram. Soc.
,
2
(
4
), pp.
329
332
.10.1016/j.jascer.2014.08.004
19.
Fujiwara
,
N.
,
Siroma
,
Z.
,
Yamazaki
,
S.
,
Asahi
,
M.
,
Nagai
,
T.
, and
Ioroi
,
T.
,
2013
, “
Reversible Air Electrodes Using Perovskite Oxide Catalysts Complexed With Carbon Black
,”
80th Meeting of the Electrochemical Society of Japan
, Katahira, Japan, Mar. 29–31, p.
3A21
.
20.
Paulus
,
U. A.
,
Schmidt
,
T. J.
,
Gasteiger
,
H. A.
, and
Behm
,
R. J.
,
2001
, “
Oxygen Reduction on a High-Surface Area Pt/Vulcan Carbon Catalyst: A Thin-Film Rotating Ring-Disk Electrode Study
,”
J. Electroanal. Chem.
,
495
(2), pp.
134
145
.10.1016/S0022-0728(00)00407-1
You do not currently have access to this content.