Selenium modified ruthenium electrocatalysts supported on carbon black were synthesized using NaBH4 reduction of the metal precursor. Prepared Ru/C electrocatalysts showed high dispersion and very small averaged particle size. These Ru/C electrocatalysts were subsequently modified with Se following two procedures: (a) preformed Ru/carbon catalyst was mixed with SeO2 in xylene and reduced in H2 and (b) Ru metal precursor was mixed with SeO2 followed by reduction with NaBH4. The XRD patterns indicate that a pyrite-type structure was obtained at higher annealing temperatures, regardless of the Ru:Se molar ratio used in the preparation step. A pyrite-type structure also emerged in samples that were not calcined; however, in this case, the pyrite-type structure was only prominent for samples with higher Ru:Se ratios. The characterization of the RuSe/C electrocatalysts suggested that the Se in noncalcined samples was present mainly as an amorphous skin. Preliminary study of activity toward oxygen reduction reaction (ORR) using electrocatalysts with a Ru:Se ratio of 1:0.7 indicated that annealing after modification with Se had a detrimental effect on their activity. This result could be related to the increased particle size of crystalline RuSe2 in heat-treated samples. Higher activity of not annealed RuSe/C catalysts could also be a result of the structure containing amorphous Se skin on the Ru crystal. The electrode obtained using not calcined RuSe showed a very promising performance with a slightly lower activity and higher overpotential in comparison with a commercial Pt/C electrode. Single wall carbon nanohorns (SWNH) were considered for application as ORR electrocatalysts' supports. The characterization of SWNH was carried out regarding their tolerance toward strong catalyzed corrosion conditions. Tests indicated that SWNH have a three times higher electrochemical surface area (ESA) loss than carbon black or Pt commercial electrodes.

References

References
1.
Wang
,
X.
,
Li
,
W.
,
Chen
,
Z.
,
Waje
,
M.
, and
Yan
,
Y.
,
2006
, “
Durability Investigation of Carbon Nanotube as Catalyst Support for Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
158
(
1
), pp.
154
159
.10.1016/j.jpowsour.2005.09.039
2.
Neburchilov
,
V.
,
Martin
,
J.
,
Wang
,
H.
, and
Zhang
,
J.
,
2007
, “
A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells
,”
J. Power Sources
,
169
(
2
), pp.
221
238
.10.1016/j.jpowsour.2007.03.044
3.
Ricea
,
C.
,
Haa
,
S.
, and
Masela
,
R. I.
,
2003
, “
Catalysts for Direct Formic Acid Fuel Cells
,”
J. Power Sources
,
115
(
2
), pp.
229
235
.10.1016/S0378-7753(03)00026-0
4.
Sa
,
S.
,
Silva
,
H.
,
Brandao
,
L.
,
Sousa
,
J. M.
, and
Mendes
,
A.
,
2010
, “
Catalysts for Methanol Steam Reforming—A Review
,”
Appl. Catal. B
,
99
(
1–2
), pp.
43
57
.10.1016/j.apcatb.2010.06.015
5.
Song
,
S. Q.
,
Zhou
,
W. J.
,
Li
,
W. Z.
,
Sun
,
G.
,
Xin
,
Q.
,
Kontou
,
S.
, and
Tsiakaras
,
P.
,
2004
, “
Direct Methanol Fuel Cells: Methanol Crossover and Its Influence on Single DMFC Performance
,”
Ionics
,
10
(
5–6
), pp.
458
462
.10.1007/BF02378008
6.
Kamarudina
,
S. K.
,
Achmada
,
F.
, and
Dauda
,
W. R. W.
,
2009
, “
Overview on the Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6902
6916
.10.1016/j.ijhydene.2009.06.013
7.
Ahmed
,
M.
, and
Dincer
,
I.
,
2011
, “
A Review on Methanol Crossover in Direct Methanol Fuel Cells: Challenges and Achievements
,”
Int. J. Energy Res.
,
35
(
14
), pp.
1213
1228
.10.1002/er.1889
8.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
.10.1016/j.apenergy.2010.09.030
9.
Haile
,
S. M.
,
2003
, “
Fuel Cell Materials and Components
,”
Acta Mater.
,
51
(
19
), pp.
5981
6000
.10.1016/j.actamat.2003.08.004
10.
Arbizzani
,
C.
,
Righi
,
S.
,
Soavi
,
F.
, and
Mastragostino
,
M.
,
2011
, “
Graphene and Carbon Nanotube Structures Supported on Mesoporous Xerogel Carbon as Catalysts for Oxygen Reduction Reaction in Proton-Exchange-Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
8
), pp.
5038
5046
.10.1016/j.ijhydene.2011.01.083
11.
Jeon
,
I.-Y.
,
Choi
,
H.-J.
,
Choi
,
M.
,
Seo
,
J.-M.
,
Jung
,
S.-M.
,
Kim
,
M.-J.
,
Zhang
,
S.
,
Zhang
,
L.
,
Xia
,
Z.
,
Dai
,
L.
,
Park
,
N.
, and
Baek
,
J.-B.
,
2013
, “
Facile, Scalable Synthesis of Edge-Halogenated Graphene Nanoplatelets as Efficient Metal-Free Eletrocatalysts for Oxygen Reduction Reaction
,”
Sci. Rep.
,
3
, p. 1810.10.1038/srep01810
12.
Feng
,
Y. J.
,
Gago
,
A.
,
Timperman
,
L.
, and
Alonso-Vante
,
N.
,
2011
, “
Chalcogenide Metal Centers for Oxygen Reduction Reaction: Activity and Tolerance
,”
Electrochim. Acta
,
56
(
3
), pp.
1009
1022
.10.1016/j.electacta.2010.09.085
13.
Johnston
,
C. M.
,
Cao
,
D. X.
,
Choi
,
J. H.
,
Babu
,
P. K.
,
Garzon
,
F.
, and
Zelenay
,
P.
,
2011
, “
Se-Modified Ru Nanoparticles as ORR Catalysts—Part 1: Synthesis and Analysis by RRDE and in PEFCs
,”
J. Electroanal. Chem.
,
662
(
1
), pp.
257
266
.10.1016/j.jelechem.2011.07.015
14.
Hara
,
Y.
,
Minami
,
N.
, and
Itagaki
,
H.
,
2008
, “
Electrocatalytic Properties of Ruthenium Modified With Te Metal for the Oxygen Reduction Reaction
,”
Appl. Catal., A
,
340
(
1
), pp.
59
66
.10.1016/j.apcata.2008.01.036
15.
Colmenares
,
L.
,
Jusys
,
Z.
, and
Behm
,
R. J.
,
2007
, “
Activity, Selectivity, and Methanol Tolerance of Se-Modified Ru/C Cathode Catalysts
,”
J. Phys. Chem. C
,
111
(
3
), pp.
1273
1283
.10.1021/jp0645925
16.
Neergat
,
M.
,
Gunasekar
,
V.
, and
Singh
,
R. K.
,
2011
, “
Oxygen Reduction Reaction and Peroxide Generation on Ir, Rh, and Their Selenides—A Comparison With Pt and RuSe
,”
J. Electrochem. Soc.
,
158
(
9
), pp.
B1060
B1066
.10.1149/1.3604744
17.
Ezeta-Mejía
,
A.
,
Solorza-Feria
,
O.
,
Dorantes-Rosales
,
H. J.
,
López
,
J. M. H.
, and
Arce-Estrada
,
E. M.
,
2012
, “
Electrocatalytic Properties of Bimetallic Surfaces for the Oxygen Reduction Reaction
,”
Int. J. Electrochem. Sci.
,
7
, pp.
8940
8957
. http://www.electrochemsci.org/papers/vol7/7098940.pdf
18.
González-Huerta
,
R. G.
,
Chávez-Carvayar
,
J. A.
, and
Solorza-Feria
,
O.
,
2006
, “
Electrocatalysis of Oxygen Reduction on Carbon Supported Ru-Based Catalysts in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
153
(1), pp.
11
17
.10.1016/j.jpowsour.2005.03.188
19.
Cheng
,
H.
,
Yuan
,
W.
, and
Scott
,
K.
,
2007
, “
Influence of Thermal Treatment on RuSe Cathode Materials for Direct Methanol Fuel Cells
,”
Fuel Cells
,
7
(
1
), pp.
16
20
.10.1002/fuce.200500253
20.
Babu
,
P. K.
,
Lewera
,
A.
,
Chung
,
J. H.
,
Hunger
,
R.
,
Jaegermann
,
W.
,
Alonso-Vante
,
N.
,
Wieckowski
,
A.
, and
Oldfield
,
E.
,
2007
, “
Selenium Becomes Metallic in Ru-Se Fuel Cell Catalysts: An EC-NMR and XPS Investigation
,”
J. Am. Chem. Soc.
,
129
(
49
), pp.
15140
15141
.10.1021/ja077498q
21.
Tritsaris
,
G. A.
,
Nørskov
,
J. K.
, and
Rossmeisl
,
J.
,
2011
, “
Trends in Oxygen Reduction and Methanol Activation on Transition Metal Chalcogenides
,”
Electrochim. Acta
,
56
(27), pp.
9783
9788
.10.1016/j.electacta.2011.08.045
22.
Matsumoto
,
T.
,
Komatsu
,
T.
,
Nakano
,
H.
,
Arai
,
K.
,
Nagashima
,
Y.
,
Yoo
,
E.
,
Yamazaki
,
T.
,
Kijima
,
M.
,
Shimizu
,
H.
,
Takasawa
,
Y.
, and
Nakamura
,
J.
,
2004
, “
Efficient Usage of Highly Dispersed Pt on Carbon Nanotubes for Electrode Catalysts of Polymer Electrolyte Fuel Cells
,”
Catal. Today
,
90
(
3–4
), pp.
277
281
.10.1016/j.cattod.2004.04.038
23.
Andersen
,
S. M.
,
Borghei
,
M.
,
Lund
,
P.
,
Elina
,
Y. R.
,
Pasanen
,
A.
,
Kauppinen
,
E.
,
Ruiz
,
V.
,
Kauranen
,
P.
, and
Skou
,
E. M.
,
2013
, “
Durability of Carbon Nanofiber (CNF) & Carbon Nanotube (CNT) as Catalyst Support for Proton Exchange Membrane Fuel Cells
,”
Solid State Ionics
,
231
, pp.
94
101
.10.1016/j.ssi.2012.11.020
24.
Brandão
,
L.
,
Passeira
,
C.
,
Mirabile Gattia
,
D.
, and
Mendes
,
A.
,
2011
, “
Use of Single Wall Carbon Nanohorns in Polymeric Electrolyte Fuel Cells
,”
J. Mater. Sci.
,
46
(22), pp.
7198
7205
.10.1007/s10853-010-4638-6
25.
Brandão
,
L.
,
Boaventura
,
M.
,
Passeira
,
C.
,
Gattia
,
D. M.
,
Marazzi
,
R.
,
Antisari
,
M. V.
, and
Mendes
,
A.
,
2011
, “
An Electrochemical Impedance Spectroscopy Study of Polymer Electrolyte Membrane Fuel Cells Electrocatalyst Single Wall Carbon Nanohorns-Supported
,”
J. Nanosci. Nanotechnol.
,
11
(10), pp.
9016
9024
.10.1166/jnn.2011.3466
26.
Brandao
,
L.
,
Boaventura
,
M.
, and
Ribeirinha
,
P.
,
2012
, “
Single Wall Nanohorns as Electrocatalyst Support for Vapour Phase High Temperature DMFC
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19073
19081
.10.1016/j.ijhydene.2012.09.133
27.
Boaventura
,
M.
,
Brandão
,
L.
, and
Mendes
,
A.
,
2011
, “
Single-Wall Nanohorns as Electrocatalyst Support for High Temperature PEM Fuel Cells
,”
J. Electrochem. Soc.
,
158
(
4
), pp.
B394
B401
.10.1149/1.3551495
28.
Oh
,
H. S.
,
Lim
,
K. H.
,
Roh
,
B.
,
Hwang
,
I.
, and
Kim
,
H.
,
2009
, “
Corrosion Resistance and Sintering Effect of Carbon Supports in Polymer Electrolyte Membrane Fuel Cells
,”
Electrochim. Acta
,
54
(
26
), pp.
6515
6521
.10.1016/j.electacta.2009.06.028
29.
Zaikovskii
,
V. I.
,
Nagabhushana
,
K. S.
,
Kriventsov
,
V. V.
,
Loponov
,
K. N.
,
Cherepanova
,
S. V.
,
Kvon
,
R. I.
,
Bonnemann
,
H.
,
Kochubey
,
D. I.
, and
Savinova
,
E. R.
,
2006
, “
Synthesis and Structural Characterization of Se-Modified Carbon-Supported Ru Nanoparticles for the Oxygen Reduction Reaction
,”
J. Phys. Chem.
,
110
(
13
), pp.
6881
6890
.10.1021/jp056715b
30.
Shen
,
M. Y.
,
Chiao
,
S. P.
,
Tsai
,
D. S.
,
Wilkinson
,
D. P.
, and
Jiang
,
J. C.
,
2009
, “
Preparation and Oxygen Reduction Activity of Stable RuSex/C Catalyst With Pyrite Structure
,”
Electrochim. Acta
,
54
(
18
), pp.
4297
4304
.10.1016/j.electacta.2009.02.081
31.
Li
,
L.
, and
Xing
,
Y.
,
2006
, “
Electrochemical Durability of Carbon Nanotubes in Noncatalyzed and Catalyzed Oxidations
,”
J. Electrochem. Soc.
,
153
(
10
), pp.
A1823
A1828
.10.1149/1.2234659
32.
Shao
,
Y.
,
Yin
,
G.
,
Zhang
,
J.
, and
Gao
,
Y.
,
2006
, “
Comparative Investigation of the Resistance to Electrochemical Oxidation of Carbon Black and Carbon Nanotubes in Aqueous Sulfuric Acid Solution
,”
Electrochim. Acta
,
51
(
26
), pp.
5853
5857
.10.1016/j.electacta.2006.03.021
33.
Hung
,
C. C.
,
Lim
,
P. Y.
,
Chen
,
J. R.
, and
Shih
,
H. C.
,
2011
, “
Corrosion of Carbon Support for PEM Fuel Cells by Electrochemical Quartz Crystal Microbalance
,”
J. Power Sources
,
196
(
1
), pp.
140
146
.10.1016/j.jpowsour.2010.07.015
34.
Zhang
,
M. F.
,
Yamaguchi
,
T.
,
Iijima
,
S.
, and
Yudasaka
,
M.
,
2009
, “
Individual Single-Wall Carbon Nanohorns Separated From Aggregates
,”
J. Phys. Chem. C
,
113
(
26
), pp.
11184
11186
.10.1021/jp9037705
35.
Li
,
L.
, and
Xing
,
Y.
,
2008
, “
Electrochemical Durability of Carbon Nanotubes at 80 °C
,”
J. Power Sources
,
178
(
1
), pp.
75
79
.10.1016/j.jpowsour.2007.12.002
You do not currently have access to this content.