Molecular dynamics (MD) simulation of yttria/scandia-stabilized zirconia (SSZ) with variably distributed Y/Sc dopant ions shows that energy is minimized when the dopants are uniformly spread apart, provided that the lattice maintains cubic fluorite symmetry. In contrast, highly clustered dopants are found to destabilize the cubic phase due to the presence of large regions of dopant-free zirconia. Computed oxygen diffusion coefficients and conductivity values consistently show that the Haven ratio is always less than one, indicating that correlation effects influence the motion of oxygen ions and vacancies. In addition, it is seen that the conductivity of crystals with noncubic symmetry is markedly anisotropic.

References

References
1.
Stefanovich
,
E. V.
,
Shluger
,
A. L.
, and
Catlow
,
C. R. A.
,
1994
, “
Theoretical Study of the Stabilization of Cubic-Phase ZrO2 by Impurities
,”
Phys. Rev. B
,
49
(
17
), pp.
11560
11571
.10.1103/PhysRevB.49.11560
2.
Yamamoto
,
O.
,
Arachi
,
Y.
,
Sakai
,
H.
,
Takeda
,
Y.
,
Imanishi
,
N.
,
Mizutani
,
Y.
,
Kawai
,
M.
, and
Nakamura
,
Y.
,
1998
, “
Zirconia Based Oxide Ion Conductors for Solid Oxide Fuel Cells
,”
Ionics
,
4
(
5–6
), pp.
403
408
.10.1007/BF02375884
3.
Badwal
,
S. P. S.
,
Ciacchi
,
F. T.
, and
Milosevic
,
D.
,
2000
, “
Scandia-Zirconia Electrolytes for Intermediate Temperature Solid Oxide Fuel Cell Operation
,”
Solid State Ion.
,
136–137
, pp.
91
99
.10.1016/S0167-2738(00)00356-8
4.
Badwal
,
S. P. S.
,
1983
, “
Electrical Conductivity of Sc2O3-ZrO2 Compositions by 4-Probe d.c. and 2-Probe Complex Impedance Techniques
,”
J. Mater. Sci.
,
18
(
10
), pp.
3117
3127
.10.1007/BF00700796
5.
Badwal
,
S. P. S.
,
1987
, “
Effect of Dopant Concentration on Electrical Conductivity in the Sc2O3-ZrO2 System
,”
J. Mater. Sci.
,
22
(
11
), pp.
4125
4132
10.1007/BF01133368
6.
Ciacchi
,
F. T.
,
Badwal
,
S. P. S.
, and
Drennan
,
J.
,
1991
, “
The System Y2O3-Sc2O3-ZrO2: Phase Characterisation by XRD, TEM and Optical Microscopy
,”
J. Eur. Ceram. Soc.
,
7
(
3
), pp.
185
195
.10.1016/0955-2219(91)90036-Y
7.
Badwal
,
S. P. S.
,
1992
Zirconia-Based Solid Electrolytes: Microstructure, Stability and Ionic Conductivity
,”
Solid State Ion.
,
52
(
1–3
), pp.
23
32
.10.1016/0167-2738(92)90088-7
8.
Badwal
,
S. P. S.
, and
Drennan
,
J.
,
1992
, “
Microstructure/Conductivity Relationship in the Scandia–Zirconia System
,”
Solid State Ion.
,
53–56
(
2
), pp.
769
776
.10.1016/0167-2738(92)90253-L
9.
Badwal
,
S. P. S.
,
Ciacchi
,
F. T.
,
Rajendran
,
S.
, and
Drennan
,
J.
,
1998
, “
An Investigation of Conductivity, Microstructure and Stability of Electrolyte Compositions in the System 9 mol% (Sc2O3-Y2O3)-ZrO2(Al2O3)
,”
Solid State Ion.
,
109
(
3
), pp.
167
186
.10.1016/S0167-2738(98)00079-4
10.
Fujimora
,
H.
,
Yashima
,
M.
,
Kakihana
,
M.
, and
Yoshimura
,
M.
,
2002
, “
β-Cubic Phase Transition of Scandia-Doped Zirconia Solid Solution: Calorimetry, X-Ray Diffraction, and Raman Scattering
,”
J. Appl. Phys.
,
91
(
10
), pp.
6493
6498
10.1063/1.1471576
11.
Haering
,
C.
,
Roosen
,
A.
, and
Schichl
,
H.
,
2005
, “
Degradation of the Electrical Conductivity in Stabilised Zirconia Systems: Part I: Yttria-Stabilised Zirconia
,”
Solid State Ion.
,
176
(
3–4
), pp.
253
259
.10.1016/j.ssi.2004.07.038
12.
Haering
,
C.
,
Roosen
,
A.
,
Schichl
,
H.
, and
Schnöller
,
M.
,
2005
, “
Degradation of the Electrical Conductivity in Stabilised Zirconia System: Part II: Scandia-Stabilised Zirconia
,”
Solid State Ion.
,
176
(
3–4
), pp.
261
268
.10.1016/j.ssi.2004.07.039
13.
Araki
,
W.
,
Koshikawa
,
T.
,
Yamaji
,
A.
, and
Adachi
,
T.
,
2009
, “
Degradation Mechanism of Scandia-Stabilised Zirconia Electrolytes: Discussion Based on Annealing Effects on Mechanical Strength, Ionic Conductivity, and Raman Spectrum
,”
Solid State Ion.
,
180
(
28–31
), pp.
1484
1489
.10.1016/j.ssi.2009.09.001
14.
Stafford
,
R. J.
,
Rothman
,
S. J.
, and
Routbort
,
J. L.
,
1989
, “
Effect of Dopant Size on the Ionic Conductivity of Cubic Stabilised ZrO2
,”
Solid State Ion.
,
37
(
1
), pp.
67
72
.10.1016/0167-2738(89)90289-0
15.
Taylor
,
M. A.
,
Argirusis
,
C.
,
Kilo
,
M.
,
Borchardt
,
G.
,
Luther
,
K.-D.
, and
Assmus
,
W.
,
2004
, “
Correlation Between Ionic Radius and Cation Diffusion in Stabilised Zirconia
,”
Solid State Ion.
,
173
(
1–4
), pp.
51
56
.10.1016/j.ssi.2004.07.051
16.
Lybye
,
D.
, and
Mogensen
,
M.
,
2006
, “
Effect of Transition Metal Ions on the Conductivity and Stability of Stabilised Zirconia
,”
Advances in Solid Oxide Fuel Cells II, a collection of papers presented at the 30th International Conference on Advanced Ceramics and Composites
, Cocoa Beach, FL, Jan. 22–27, pp.
67
78
.
17.
Marrocchelli
,
D.
,
Madden
,
P. A.
,
Norberg
,
S. T.
, and
Hull
,
S.
,
2009
, “
Cation Composition Effects on Oxide Conductivity in the Zr2Y2O7-Y2NbO7 System
,”
J. Phys.: Condens. Matter
,
21
(
40
), p.
405403
.10.1088/0953-8984/21/40/405403
18.
Marrocchelli
,
D.
,
Madden
,
P. A.
,
Norberg
,
S. T.
, and
Hull
,
S.
,
2011
, “
Structural Disorder in Doped Zirconias, Part II: Vacancy Ordering Effects and the Conductivity Maximum
,”
Chem. Mater.
,
23
(
6
), pp.
1365
1373
.10.1021/cm102809t
19.
Politova
,
T. I.
, and
Irvine
,
J. T. S.
,
2004
, “
Investigation of Scandia-Yttria-Zirconia System as an Electrolyte Material for Intermediate Temperature Fuel Cells-Influence of Yttria Content in System (Y2O3)x(Sc2O3)11-x(ZrO2)89
,”
Solid State Ion.
,
168
(
1–2
), pp.
153
165
.10.1016/j.ssi.2004.02.007
20.
Kilo
,
M.
,
Argirusis
,
C.
,
Borchardt
,
G.
, and
Jackson
,
R. A.
,
2003
, “
Oxygen Diffusion in Yttria Stabilised Zirconia—Experimental Results and Molecular Dynamics Calculations
,”
Phys. Chem. Chem. Phys.
,
5
(
11
), pp.
2219
2224
.10.1039/b300151m
21.
Dwivedi
,
A.
, and
Cormack
,
A. N.
,
1990
, “
A Computer Simulation Study of the Defect Structure of Calcia-Stabilized Zirconia
,”
Philos. Mag. A
,
61
(
1
), pp.
1
22
.10.1080/01418619008235554
22.
Shimojo
,
F.
,
Okabe
,
T.
,
Tachibana
,
F.
,
Kobayashi
,
M.
, and
Okazaki
,
H.
,
1992
, “
Molecular Dynamics Studies of Yttria Stabilized Zirconia. I. Structure and Oxygen Diffusion
,”
J. Phys. Soc. Jpn.
,
61
(
8
), pp.
2848
2857
.10.1143/JPSJ.61.2848
23.
Shimojo
,
F.
, and
Okazaki
,
H.
,
1992
, “
Molecular Dynamics Studies of Yttria Stabilized Zirconia. II. Microscopic Mechanism of Oxygen Diffusion
,”
J. Phys. Soc. Jpn.
,
61
(
11
), pp.
4106
4118
.10.1143/JPSJ.61.4106
24.
Krishnamurthy
,
R.
,
Srolovitz
,
D. J.
,
Kudin
,
K. N.
, and
Car
,
R.
,
2005
, “
Effects of Lanthanide Dopants on Oxygen Diffusion in Yttria-Stabilized Zirconia
,”
J. Am. Ceram. Soc.
,
88
(
8
), pp.
2143
2151
.10.1111/j.1551-2916.2005.00353.x
25.
Zhang
,
Q.
, and
Chan
,
K.-Y.
,
2007
, “
Alternate Current Nonequilibrium Molecular Dynamics Simulations of Yttria-Stabilized Zirconia
,”
J. Phys. Chem. C
,
111
(
43
), pp.
15832
15838
.10.1021/jp0741152
26.
van Duin
,
A. C. T.
,
Merinov
,
B. V.
,
Jang
,
S. S.
, and
Goddard
, III,
W. A.
,
2008
, “
ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems With Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia
,”
J. Phys. Chem. A
,
112
(
14
), pp.
3133
3140
.10.1021/jp076775c
27.
Chang
,
K.-S.
, and
Tung
,
K.-L.
,
2009
, “
Oxygen-Ion Transport in a Dual-Phase Scandia-Yttria-Stabilized Zirconia Solid Electrolyte: A Molecular Dynamics Simulation
,”
Chem. Phys. Chem.
,
10
(
11
), pp.
1887
1894
.10.1002/cphc.200900100
28.
Einstein
,
A.
,
1905
, “
On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat
,”
Ann. Phys.
,
17
, pp.
549
560
.10.1002/andp.19053220806
29.
Murch
,
G. E.
,
1982
, “
The Haven Ratio in Fast Ionic Conductors
,”
Solid State Ion.
,
7
(
3
), pp.
177
198
.10.1016/0167-2738(82)90050-9
30.
Lau
,
K. C.
, and
Dunlap
,
B. I.
,
2011
, “
Molecular Dynamics Simulation of Yttria-Stabilized Zirconia (YSZ) Crystalline and Amorphous Solids
,”
J. Phys.: Condens. Matter
,
23
(
3
), p.
035401
.10.1088/0953-8984/23/3/035401
31.
Tang
,
Y. W.
,
Zhang
,
Q.
, and
Chan
,
K.-Y.
,
2004
, “
Non-Equilibrium Molecular Dynamics Simulation of Oxygen Ion Mobility in Yttria Stabilized Zirconia
,”
Chem. Phys. Lett.
,
385
(
3–4
), pp.
202
207
.10.1016/j.cplett.2003.12.097
32.
Miller
,
S. P.
,
Dunlap
,
B. I.
, and
Fleischer
,
A. S.
,
2013
, “
Effects of Dopant Clustering in Cubic Zirconia Stabilized by Yttria and Scandia From Molecular Dynamics
,”
Solid State Ion.
,
253
, pp.
130
136
.10.1016/j.ssi.2013.08.042
33.
Shinoda
,
W.
,
Shiga
,
M.
, and
Mikami
,
M.
,
2004
, “
Rapid Estimation of Elastic Constants by Molecular Dynamics Simulation Under Constant Stress
,”
Phys. Rev. B
,
69
, p.
134103
.10.1103/PhysRevB.69.134103
34.
Deserno
,
M.
, and
Holm
,
C.
,
1998
, “
How to Mesh Up Ewald Sums. I. A Theoretical and Numerical Comparison of Various Particle Mesh Routines
,”
J. Chem. Phys.
,
109
(
18
), pp.
7678
7693
.10.1063/1.477414
35.
Minervini
,
L.
,
Grimes
,
R. W.
, and
Sickafus
,
K. E.
,
2000
, “
Disorder in Pyrochlore Oxides
,”
J. Am. Ceram. Soc
.
83
(
8
), pp.
1873
1878
.10.1111/j.1151-2916.2000.tb01484.x
36.
Miller
,
S. P.
,
Dunlap
,
B. I.
, and
Fleischer
,
A. S.
, “
Cation Coordination and Interstitial Oxygen Occupancy in Co-Doped Zirconia From First Principles
,”
Solid State Ion.
,
227
, pp.
66
72
.10.1016/j.ssi.2012.07.017
37.
Delugas
,
P.
,
Fiorentini
,
V.
, and
Filippetti
,
A.
,
2009
, “
Dielectric and Vibrational Properties of Bixbyite Sesquioxides
,”
Phys. Rev. B
,
80
, p.
104301
.10.1103/PhysRevB.80.104301
38.
Lau
,
K. C.
, and
Dunlap
,
B. I.
,
2009
, “
Lattice Dielectric and Thermodynamic Properties of Yttria Stabilized Zirconia Solids
,”
J. Phys.: Condens. Matter
,
21
(
14
), p.
145402
.10.1088/0953-8984/21/14/145402
39.
Xu
,
Y.-N.
,
Gu
,
Z.-Q.
, and
Ching
,
W. Y.
,
1997
, “
Electronic, Structural, and Optical Properties of Crystalline Yttria
,”
Phys. Rev. B
,
56
(
23
), pp.
14993
15000
.10.1103/PhysRevB.56.14993
40.
Raj
,
E. S.
,
Atkinson
,
A.
, and
Kilner
,
J. A.
,
2009
, “
Oxygen Diffusion Studies on (Y2O3)2(Sc2O3)9(ZrO2)89
,”
Solid State Ion.
,
180
(
14–16
), pp.
952
955
.10.1016/j.ssi.2009.03.009
You do not currently have access to this content.