The effect of biomass gas on the safety performance of a solid oxide fuel cell (SOFC)/micro gas turbine (GT) hybrid system was studied with consideration of the fuel cell working temperature, fuel cell temperature gradient requirement, compressor surge zone, and turbine inlet temperature (TIT). The safety performance of the hybrid system on the design condition and off-design condition was also analyzed. Results show that the hybrid system is good adaptability to low concentrations of biomass gas. The electrical efficiency could reach 50% with different biomass gases and is higher than the other combined power systems that used biomass gas. The wood chip gas (WCG) would make the fuel cell or GT easier overheat than the other three gases. The cotton wood gas (CWG) and corn stalk gas (CSG) are easy to cause the TIT too low or the compressor surge. In the safety zone, considering the hybrid system load adjustment range, the effecting order (from large to small, following is same) is WCG, grape seed gas (GSG), CSG, and CWG. Considering the hybrid system electric efficiency, the effecting order is WCG, GSG, CWG, and CSG.

References

References
1.
Ozgur Colpan
,
C.
,
Hamdullahpur
,
F.
,
Dincer
,
I.
, and
Yoo
,
Y.
,
2009
, “
Effect of Gasification Agent on the Performance of Solid Oxide Fuel Cell and Biomass Gasification Systems
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
5001
5009
.10.1016/j.ijhydene.2009.08.083
2.
Shiratori
,
Y.
,
Ijichi
,
T.
,
Oshima
,
T.
, and
Sasaki
,
K.
,
2010
, “
Internal Reforming SOFC Running on Biogas
,”
Int. J. Hydrogen Energy
,
35
(
15
), pp.
7905
7912
.10.1016/j.ijhydene.2010.05.064
3.
Lanzini
,
A.
, and
Leone
,
P.
,
2010
, “
Experimental Investigation of Direct Internal Reforming of Biogas in Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
2463
2476
.10.1016/j.ijhydene.2009.12.146
4.
Aravind
,
P. V.
, and
de Jong
,
W.
,
2012
, “
Evaluation of High Temperature Gas Cleaning Options for Biomass Gasification Product Gas for Solid Oxide Fuel Cells
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
737
764
.10.1016/j.pecs.2012.03.006
5.
Abuadala
,
A.
, and
Dincer
,
I.
,
2011
, “
Exergoeconomic Analysis of a Hybrid System Based on Steam Biomass Gasification Products for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
36
(
20
), pp.
12780
12793
.10.1016/j.ijhydene.2011.07.067
6.
Wongchanapai
,
S.
,
Iwai
,
H.
,
Saito
,
M.
, and
Yoshida
,
H.
,
2012
, “
Performance Evaluation of an Integrated Small-Scale SOFC-Biomass Gasification Power Generation System
,”
J. Power Sources
,
216
, pp.
314
322
.10.1016/j.jpowsour.2012.05.098
7.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2001
, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
,
96
(
2
), pp.
352
368
.10.1016/S0378-7753(00)00668-6
8.
Komatsu
,
Y.
,
Kimijima
,
S.
, and
Szmyd
,
J. S.
,
2010
, “
Performance Analysis for the Part-Load Operation of a Solid Oxide Fuel Cell–Micro Gas Turbine Hybrid System
,”
Energy
,
35
(
2
), pp.
982
988
.10.1016/j.energy.2009.06.035
9.
Campanari
,
S.
,
2000
, “
Full Load and Part-Load Performance Prediction for Integrated SOFC and Microturbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
239
246
.10.1115/1.483201
10.
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
,
2006
, “
Safe Dynamic Operation of a Simple SOFC/GT Hybrid System
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
551
559
.10.1115/1.2132385
11.
Bakalis
,
D. P.
, and
Stamatis
,
A. G.
,
2013
, “
Incorporating Available Micro Gas Turbines and Fuel Cell: Matching Considerations and Performance Evaluation
,”
Appl. Energy
,
103
, pp.
607
617
.10.1016/j.apenergy.2012.10.026
12.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
,
138
(
1
), pp.
120
136
.10.1016/j.jpowsour.2004.06.040
13.
Zhang
,
H.
,
Wang
,
L.
,
Weng
,
S.
, and
Su
,
M.
,
2008
, “
Modeling and Simulation of Solid Oxide Fuel Cell Based on the Volume–Resistance Characteristic Modeling Technique
,”
J. Power Sources
,
177
(
1
), pp.
579
589
.10.1016/j.jpowsour.2007.11.064
14.
Yakabe
,
H.
, and
Sakurai
,
T.
,
2004
, “
3D Simulation on the Current Path in Planar SOFCs
,”
Solid State Ionics
,
174
(
1–4
), pp.
295
302
.10.1016/j.ssi.2004.07.043
15.
Lazzaretto
,
A.
, and
Toffolo
,
A.
,
2004
, “
Energy, Economy and Environment as Objectives in Multi-Criterion Optimization of Thermal Systems Design
,”
Energy
,
29
(
8
), pp.
1139
1157
.10.1016/j.energy.2004.02.022
16.
Bessestte
,
N.
,
1994
, “
Modeling and Simulation for Solid Oxide Fuel Cell Power Systems
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
17.
Achenbach
,
E.
,
1994
, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
,
49
(
1–4
), pp.
333
348
.10.1016/0378-7753(93)01833-4
18.
Bang-Møller
,
C.
,
Rokni
,
M.
, and
Elmegaard
,
B.
,
2011
, “
Exergy Analysis and Optimization of a Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid System
,”
Energy
,
36
(
8
), pp.
4740
4752
.10.1016/j.energy.2011.05.005
19.
Liu
,
A.
, and
Weng
,
Y.
,
2010
, “
Modeling of Molten Carbonate Fuel Cell Based on the Volume–Resistance Characteristics and Experimental Analysis
,”
J. Power Sources
,
195
(
7
), pp.
1872
1879
.10.1016/j.jpowsour.2009.10.040
20.
Herb Saravanamuttoo
,
U. K.
,
Rogers
,
G.
, and
Cohen
,
H.
,
2001
,
Gas Turbine Theory
,
5th ed.
, Pearson Education Ltd., London.
21.
Li
,
Y.
, and
Weng
,
Y.
,
2011
, “
Performance Study of a Solid Oxide Fuel Cell and Gas Turbine Hybrid System Designed for Methane Operating With Non-Designed Fuels
,”
J. Power Sources
,
196
(
8
), pp.
3824
3835
.10.1016/j.jpowsour.2011.01.011
You do not currently have access to this content.