The three layers with porous yttria-stabilized zirconia (YSZ) backbone/dense YSZ/porous NiO–YSZ were fabricated by tape-casting process, respectively, then laminated together and co-fired at 1300 °C for 5 h. The cathode material La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) was loaded by infiltrating the precursor of metal ions into porous YSZ backbone. As a result, LSCF nanoparticles with the size of 60–100 nm were uniformly distributed on YSZ backbone. The power density was 1.046 W cm−2 and the polarization resistance was 0.17 Ω cm2 at 800 °C in humidified H2 (3 vol.% H2O). But the stability was not good enough, especially in early operating stage, e.g., 20 h. After that, it showed good stability for the following 70 h operating under a constant voltage of 0.7 V at 750 °C. This is due to the growth and agglomeration of LSCF nanoparticles at early steps, which reduced the three phase boundaries (TPBs).

References

References
1.
EG&G Technical Services, Inc.
,
2004
,
Fuel Cell Handbook
, Vol.
7
,
7th ed.
,
U.S. Department of Energy
,
Morgantown, WV
.
2.
Sanson
,
A.
,
Pinasco
,
P.
, and
Roncari
,
E.
,
2008
, “
Influence of Pore Formers on Slurry Composition and Microstructure of Tape Cast Supporting Anodes for SOFCs
,”
J. Eur. Ceram. Soc.
,
28
(
6
), pp.
1221
1226
.10.1016/j.jeurceramsoc.2007.10.001
3.
An
,
Y. T.
,
Choi
,
B. H.
,
Ji
,
M. J.
,
Lee
,
K. J.
, and
Hwang
,
H. J.
,
2012
, “
New Fabrication Technique for a Ni–YSZ Composite Anode From a Core–Shell Structured Particle
,”
Solid State Ionics
,
207
(
18
), pp.
64
68
.10.1016/j.ssi.2011.11.013
4.
Tiwari
,
P.
, and
Basu
,
S.
,
2013
, “
Ni Infiltrated YSZ Anode Stabilization by Inducing Strong Metal Support Interaction Between Nickel and Titania in Solid Oxide Fuel Cell Under Accelerated Testing
,”
Int. J. Hydrogen Energy
,
38
(
22
), pp.
9494
9499
.10.1016/j.ijhydene.2012.09.094
5.
Lee
,
S.
,
Kang
,
K. H.
,
Hong
,
H. S.
,
Yun
,
Y.
, and
Ahn
,
J. H.
,
2009
, “
Interfacial Morphologies Between NiO–YSZ Fuel Electrode/316 Stainless Steel as the Interconnect Material and B–Ni3 Brazing Alloy in a Solid Oxide Fuel Cell System
,”
J. Alloys Compd.
,
488
(
1
), pp.
L1
L5
.10.1016/j.jallcom.2009.08.076
6.
Talebi
,
T.
,
Sarrafi
,
M. H.
,
Haji
,
M.
, and
Raissi
,
B. A.
,
2010
, “
Maghsoudipour, Investigation on Microstructures of NiO–YSZ Composite and Ni–YSZ Cermet for SOFCs
,”
Int. J. Hydrogen Energy
,
35
(
17
), pp.
9440
9447
.10.1016/j.ijhydene.2010.04.156
7.
Metcalfe
,
C.
,
Kuhn
,
J.
, and
Kesler
,
O.
,
2013
, “
Characterization of Ni–YSZ Anodes for Solid Oxide Fuel Cells Fabricated by Suspension Plasma Spraying With Axial Feedstock Injection
,”
J. Power Sources
,
243
, pp.
172
180
.10.1016/j.jpowsour.2013.05.174
8.
Priyatham
,
T.
, and
Bauri
,
R.
,
2010
, “
Synthesis and Characterization of Nanocrystalline Ni–YSZ Cermet Anode for SOFC
,”
Mater. Charact.
,
61
(
1
), pp.
54
58
.10.1016/j.matchar.2009.10.005
9.
Kim
,
S. D.
,
Lee
,
J. J.
,
Moon
,
H.
,
Hyun
,
S. H.
,
Moon
,
J.
,
Kim
,
J.
, and
Lee
,
H. W.
,
2007
, “
Effects of Anode and Electrolyte Microstructures on Performance of Solid Oxide Fuel Cells
,”
J. Power Sources
,
169
(
2
), pp.
265
270
.10.1016/j.jpowsour.2007.03.046
10.
Teraoka
,
Y.
,
Nobunaga
,
T.
,
Okamoto
,
K.
,
Miura
,
N.
, and
Yamazoe
,
N.
,
1991
, “
Influence of Constituent Metal Cations in Substituted LaCoO3 on Mixed Conductivity and Oxygen Permeability
,”
Solid State Ionics
,
48
(
3–4
), pp.
207
212
.10.1016/0167-2738(91)90034-9
11.
Yasuda
,
I.
,
Ogasawara
,
K.
,
Hishinuma
,
M.
,
Kawada
,
T.
, and
Dokiya
,
M.
,
1996
, “
Oxygen Tracer Diffusion Coefficient of (La,Sr)MnO3±δ
,”
Solid State Ionics
,
86–88
(
Part 2
), pp.
1197
1201
.10.1016/0167-2738(96)00287-1
12.
Jiang
,
S. P.
,
2002
, “
A Comparison of O2 Reduction Reactions on Porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 Electrodes
,”
Solid State Ionics
,
146
(
1–2
), pp.
1
22
.10.1016/S0167-2738(01)00997-3
13.
Esquirol
,
A.
,
Brandon
,
N. P.
,
Kilner
,
J. A.
, and
Mogensen
,
M.
,
2004
, “
Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for Intermediate Temperature SOFCs
,”
J. Electrochem. Soc.
,
151
(
11
), pp.
A1847
A1855
.10.1149/1.1799391
14.
Kindermann
,
L.
,
Das
,
D.
, and
Nickel
,
H.
,
1996
, “
Chemical Compatibility of the LaFeO3 Base Perovskites (La0.6Sr0.4)zFe0.8M0.2O3−δ (z = 1, 0.9; M = Cr, Mn, Co, Ni) With Yttria Stabilized Zirconia
,”
Solid State Ionics
,
89
(
3–4
), pp.
215
220
.10.1016/0167-2738(96)00366-9
15.
Tu
,
H. Y.
,
Takeda
,
Y.
,
Imanishi
,
N.
, and
Yamamoto
,
O.
,
1999
, “
Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln = La, Pr, Nd, Sm, Gd) for the Electrode in Solid Oxide Fuel Cells
,”
Solid State Ionics
,
117
(
3–4
), pp.
277
281
.10.1016/S0167-2738(98)00428-7
16.
Tai
,
L. W.
,
Nasrallah
,
M. M.
,
Anderson
,
H. U.
,
Sparlin
,
D. M.
, and
Sehlin
,
S. R.
,
1995
, “
Structure and Electrical Properties of La1−xSrxCo1−yFeyO3. Part 1. The System La0.8Sr0.2Co1−yFeyO3
,”
Solid State Ionics
,
76
(
3–4
), pp.
259
271
.10.1016/0167-2738(94)00244-M
17.
Petric
,
A.
,
Huang
,
P.
, and
Tietz
,
F.
,
2000
, “
Evaluation of La–Sr–Co–Fe–O Perovskites for Solid Oxide Fuel Cells and Gas Separation Membranes
,”
Solid State Ionics
,
135
(
1–4
), pp.
719
725
.10.1016/S0167-2738(00)00394-5
18.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Tietz
,
F.
, and
Stöver
,
D.
,
2006
, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part II. Influence of the CGO Interlayer
,”
Solid State Ionics
,
177
(
19–25
), pp.
2103
2107
.10.1016/j.ssi.2005.12.010
19.
Chen
,
J.
,
Liang
,
F. L.
,
Chi
,
B.
,
Pu
,
J.
,
Jiang
,
S. P.
, and
Li
,
J.
,
2009
, “
Palladium and Ceria Infiltrated La0.8Sr0.2Co0.5Fe0.5O3 Cathodes of Solid Oxide Fuel Cells
,”
J. Power Sources
,
194
(
1
), pp.
275
280
.10.1016/j.jpowsour.2009.04.041
20.
Jiang
,
Y.
,
Xia
,
C. R.
, and
Chen
,
F. L.
,
2010
, “
Nano-Structured Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells Via an Infiltration/Impregnation Technique
,”
Electrochim. Acta
,
55
(
11
), pp.
3595
3605
.10.1016/j.electacta.2010.02.019
21.
Jiang
,
S. P.
,
2011
, “
Nanoscale and Nano-Structured Electrodes of Solid Oxide Fuel Cells by Infiltration: Advances and Challenges
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
449
470
.10.1016/j.ijhydene.2011.09.067
22.
Liu
,
Z.
,
Zheng
,
Z. W.
,
Han
,
M. F.
, and
Liu
,
M. L.
,
2010
, “
High Performance Solid Oxide Fuel Cells Based on Tri-Layer Yttria-Stabilized Zirconia by Low Temperature Sintering Process
,”
J. Power Sources
,
195
(
21
), pp.
7230
7233
.10.1016/j.jpowsour.2010.05.062
23.
Han
,
M. F.
,
Tang
,
X. L.
,
Yin
,
H. Y.
,
Peng
,
S. P.
, and
Kim
,
S.
,
2007
, “
Fabrication, Microstructure and Properties of a YSZ Electrolyte for SOFCs
,”
J. Power Sources
,
165
(
2
), pp.
757
763
.10.1016/j.jpowsour.2006.11.054
24.
Li
,
J.
,
Chen
,
J.
,
Liang
,
F. L.
,
Liu
,
L. N.
,
Jiang
,
S. P.
,
Chi
,
B.
, and
Pu
,
J.
,
2008
, “
Nano-Structured (La,Sr)(Co,Fe)O3+YSZ Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells
,”
J. Power Sources
,
183
(
2
), pp.
586
589
.10.1016/j.jpowsour.2008.05.082
25.
Chen
,
K. F.
,
Ai
,
N.
, and
Jiang
,
S. P.
,
2012
, “
Reasons for the High Stability of Nano-Structured (La,Sr)MnO3 Infiltrated Y2O3–ZrO2 Composite Oxygen Electrodes of Solid Oxide Electrolysis Cells
,”
Electrochem. Commun.
,
19
, pp.
119
122
.10.1016/j.elecom.2012.03.033
26.
Liu
,
Z.
,
Liu
,
M. F.
,
Yang
,
L.
, and
Liu
,
M. L.
,
2013
, “
LSM-Infiltrated LSCF Cathodes for Solid Oxide Fuel Cells
,”
J. Energy Chem.
,
22
(
4
), pp.
555
559
.10.1016/S2095-4956(13)60072-8
27.
Liang
,
F. L.
,
Zhou
,
W.
,
Chi
,
B.
,
Pu
,
J.
,
Jiang
,
S. P.
, and
Jian
,
L.
,
2011
, “
Pd–YSZ Composite Cathodes for Oxygen Reduction Reaction of Intermediate Temperature Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
13
), pp.
7670
7676
.10.1016/j.ijhydene.2011.03.132
28.
Ai
,
N.
,
Jiang
,
S. P.
,
Lu
,
Z.
,
Chen
,
K. F.
, and
Su
,
W. H.
,
2010
, “
Nanostructured (Ba,Sr)(Co,Fe)O3−delta Impregnated (La, Sr)MnO3 Cathode for Intermediate Temperature Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
157
(
7
), pp.
B1033
B1039
.10.1149/1.3428366
29.
Lu
,
C.
,
Sholklapper
,
T. Z.
,
Jacobson
,
C. P.
,
Visco
,
S. J.
, and
Jonghe
,
L. C. D.
,
2006
, “
LSM–YSZ Cathodes With Reaction-Infiltrated Nanoparticles
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1115
A1119
.10.1149/1.2192733
30.
Lou
,
X. Y.
,
Wang
,
S. Z.
,
Liu
,
Z.
,
Yang
,
L.
, and
Liu
,
M. L.
,
2009
, “
Improving La0.6Sr0.4Co0.2Fe0.8O3−δ Cathode Performance by Infiltration of a Sm0.5Sr0.5CoO3−δ Coating
,”
Solid State Ionics
,
180
(
23–25
), pp.
1285
1289
.10.1016/j.ssi.2009.06.014
You do not currently have access to this content.