Several experiments have proved that water in liquid phase can be present at the anode of a PEM fuel cell due to vapor condensation resulting in mass transport losses. Nevertheless, it is not yet well understood where exactly water tends to cumulate and how the design of the gas channel (GC) and gas diffusion layer (GDL) could be improved to limit water cumulation. In the present work, a three-dimensional lattice Boltzmann based model is implemented in order to simulate the water cumulation at the GC–GDL interface at the anode of a PEM fuel cell. The numerical model incorporates the H2–H2O mixture equation of state and spontaneously simulates phase separation phenomena. Different simulations are carried out varying pressure gradient, pore size, and relative height of the GDL. Results reveal that, once saturation conditions are reached, water tends to cumulate in two main regions: the upper and side walls of the GC and the GC–GDL interface, resulting in a limitation of the reactant diffusion from the GC to the GDL. Interestingly, the cumulation of liquid water at the interface is found to diminish as the relative height of the GDL increases.

References

1.
Bazylak
,
A.
,
2009
, “
Liquid Water Visualization in PEM Fuel Cells: A Review
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
3845
3857
.10.1016/j.ijhydene.2009.02.084
2.
Yamauchi
,
M.
,
Sugiura
,
K.
,
Yamauchi
,
T.
,
Taniguchi
,
T.
, and
Itoh
,
Y.
,
2009
, “
Proposal for an Optimum Water Management Method Using Two-Pole Simultaneous Measurement
,”
J. Power Sources
,
193
(
1
), pp.
1
8
.10.1016/j.jpowsour.2009.02.078
3.
Ge
,
S.
, and
Wang
,
C. Y.
,
2007
, “
Liquid Water Formation and Transport in the PEFC Anode
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
B998
B1005
.10.1149/1.2761830
4.
Siegel
,
J. B.
,
McKay
,
D. A.
,
Stefanopoulou
,
A. G.
,
Hussey
,
D. S.
, and
Jacobson
,
D. L.
,
2008
, “
Measurement of Liquid Water Accumulation in a PEMFC With Dead-Ended Anode
,”
J. Electrochem. Soc.
,
155
(
11
), pp.
B1168
B1178
.10.1149/1.2976356
5.
Hartnig
,
C.
,
Manke
,
I.
,
Kuhn
,
R.
,
Kardjilov
,
N.
,
Banhart
,
J.
, and
Lehnert
,
W.
,
2008
, “
Cross-Sectional Insight in the Water Evolution and Transport in Polymer Electrolyte Fuel Cells
,”
Appl. Phys. Lett.
,
92
(
13
), p.
134106
.10.1063/1.2907485
6.
Li
,
X.
,
Sabir
,
I.
, and
Park
,
J.
,
2007
, “
A Flow Channel Design Procedure for PEM Fuel Cells With Effective Water Removal
,”
J. Power Sources
,
163
(
2
), pp.
933
942
.10.1016/j.jpowsour.2006.10.015
7.
Turhan
,
A.
,
Heller
,
K.
,
Brenizer
,
J. S.
, and
Mench
,
M. M.
,
2008
, “
Passive Control of Liquid Water Storage and Distribution in a PEFC Through Flow-Field Design
,”
J. Power Sources
,
180
(
2
), pp.
773
783
.10.1016/j.jpowsour.2008.02.028
8.
Srouji
,
A. K.
,
Zheng
,
L. J.
,
Dross
,
R.
,
Turhan
,
A.
, and
Mench
,
M. M.
,
2012
, “
Performance and Mass Transport in Open Metallic Element Architecture Fuel Cells at Ultra-High Current Density
,”
J. Power Sources
,
218
, pp.
341
347
.10.1016/j.jpowsour.2012.06.075
9.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
,
1995
, “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid. I. Theoretical Development
,”
Int. J. Heat Mass Transfer
,
38
(
14
), pp.
2635
2646
.10.1016/0017-9310(94)00346-W
10.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
,
1995
, “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid. II. Comparison With Experiment
,”
Int. J. Heat Mass Transfer
,
38
(
14
), pp.
2647
2655
.10.1016/0017-9310(94)00347-X
11.
Manes
,
C.
,
Pokrajac
,
D.
,
McEwan
,
I.
, and
Nikora
,
V.
,
2009
, “
Turbulence Structure of Open Channel Flows Over Permeable and Impermeable Beds: A Comparitive Study
,”
Phys. Fluids
,
21
(
12
). p.
125109
.10.1063/1.3276292
12.
Nabovati
,
A.
, and
Amon
,
C. H.
,
2013
, “
Hydrodynamic Boundary Condition at Open–Porous Interface: A Pore-Level Lattice Boltzmann Study
,”
Transp. Porous Media
,
96
(
1
), pp.
83
95
.10.1007/s11242-012-0074-1
13.
Maggiolo
,
D.
,
Alotto
,
P.
,
Marion
,
A.
, and
Guarnieri
,
M.
,
2013
, “
Lattice- Boltzmann-Based Model for the Channel–Porous Interface of PEMFC
,”
Fifth European Fuel Cell Technology and Applications Conference—Piero Lunghi Conference
(EFC2013), Rome, Italy, Dec. 11–13, Paper No. EFC13236, pp.
379
380
.
14.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
,
Oxford University
,
Oxford, UK
.
15.
Yuan
,
P.
, and
Schaefer
,
L.
,
2006
, “
Equations of State in a Lattice Boltzmann Model
,”
Phys. Fluids
,
18
(
4
), p.
042101
.10.1063/1.2187070
16.
Shan
,
X.
, and
Chen
,
H.
,
1193
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.10.1103/PhysRevE.47.1815
17.
Sbragaglia
,
M.
,
Benzi
,
R.
,
Biferale
,
L.
,
Succi
,
S.
,
Sugiyama
,
K.
, and
Toschi
,
F.
,
2007
, “
Generalized Lattice Boltzmann Method With Multirange Pseudopotential
,”
Phys. Rev. E
,
75
(
2
), p.
026702
.10.1103/PhysRevE.75.026702
18.
Falcucci
,
G.
,
Bella
,
G.
,
Chiatti
,
G.
,
Chibbaro
,
S.
,
Sbragaglia
,
M.
, and
Succi
,
S.
,
2007
, “
Lattice Boltzmann Models With Mid-Range Interactions
,”
Commun. Comput. Phys.
,
2
(
6
), pp.
1071
1084
, available at: http://www.global-sci.com/issue/abstract/readabs.php?vol=2&page=1071&year=2007&issue=6&ppage=1084
19.
Benzi
,
R.
,
Biferale
,
L.
,
Sbragaglia
,
M.
,
Succi
,
S.
, and
Toschi
,
F.
,
2006
, “
Mesoscopic Modeling of a Two-Phase Flow in the Presence of Boundaries: The Contact Angle
,”
Phys. Rev. E
,
74
(
2
), p.
021509
.10.1103/PhysRevE.74.021509
20.
Rimbach
,
H.
, and
Chatterjee
,
N. D.
,
1987
, “
Equations of State for H2, H2O, and H2–H2O Fluid Mixtures at Temperatures Above 0.01 °C and at High- Pressures
,”
Phys. Chem. Miner.
,
14
(
6
), pp.
560
569
.10.1007/BF00308292
21.
Chibbaro
,
S.
,
2008
, “
Capillary Filling With Pseudo-Potential Binary Lattice-Boltzmann Model
,”
Eur. Musical J. E
,
27
(
1
), pp.
99
106
.10.1140/epje/i2008-10369-4
You do not currently have access to this content.