Systematic experiments were carried out to study the effects of various operating conditions on the performances of a direct methanol fuel cell (DMFC) using Nafion 117 and its modified membranes. The cell performance was studied as a function of cell operating temperature, methanol concentration, methanol flow rate, oxygen flow rate, and methanol-to-oxygen stoichiometric ratio. The experimental results revealed that the most significant factor was the temperature, increasing the cell performance from 50 to 80 °C. We achieved the maximum power density (Pmax) of 86.4 mW cm−2 for a DMFC at 80 °C fed with 1 M methanol (flow rate of 2 ml min−1) and humidified oxygen (80 ml min−1). A methanol concentration of 1 M gave much better performance than using 3 M of methanol solution. The oxygen and methanol flow rates with the same stoichiometric ratio had a beneficial effect on cell performance up to certain values, beyond which further increase in flow rate had limited effect. The Voc using argon plasma-modified Nafion was higher than the pristine Nafion membrane for the cell operated on 3 M methanol solution, which was due to the lower methanol permeability of the Ar-modified Nafion.

References

1.
Scott
,
M.
,
Taama
,
W. M.
, and
Argyropoulos
,
P.
,
2000
, “
Performance of the Direct Methanol Fuel Cell With Radiation-Grafted Polymer Membranes
,”
J. Membr. Sci.
,
171
(
1
), pp.
119
130
.10.1016/S0376-7388(99)00382-8
2.
Shukla
,
A. K.
,
Christensen
,
P. A.
,
Dickinson
,
A. J.
, and
Hamnett
,
A.
,
1998
, “
A Liquid-Feed Solid Polymer Electrolyte Direct Methanol Fuel Cell Operating at Near-Ambient Conditions
,”
J. Power Sources
,
76
(
1
), pp.
54
59
.10.1016/S0378-7753(98)00140-2
3.
Thomas
,
S. C.
,
Ren
,
X.
,
Gottesfeld
,
S.
, and
Zelenay
,
P.
,
2002
, “
Direct Methanol Fuel Cells: Progress in Cell Performance and Cathode Research
,”
Electrochim. Acta
,
47
(
22–23
), pp.
3741
3748
.10.1016/S0013-4686(02)00344-4
4.
Nakagawa
,
N.
, and
Xiu
,
Y.
,
2003
, “
Performance of a Direct Methanol Fuel Cell Operated at Atmospheric Pressure
,”
J. Power Sources
,
118
(
1–2
), pp.
248
255
.10.1016/S0378-7753(03)00090-9
5.
Arico
,
A. S.
,
Srinivasan
,
S.
, and
Antonucci
,
V.
,
2001
, “
DMFCs: From Fundamental Aspects to Technology Development
,”
Fuel Cells
,
1
(
2
), pp.
133
161
.10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
6.
Chen
,
C. Y.
, and
Yang
,
P.
,
2003
, “
Performance of an Air-Breathing Direct Methanol Fuel Cell
,”
J. Power Sources
,
123
(
1
), pp.
37
42
.10.1016/S0378-7753(03)00434-8
7.
Dyer
,
K.
,
2002
, “
Fuel Cells for Portable Applications
,”
J. Power Sources
,
106
(
1–2
), pp.
31
34
.10.1016/S0378-7753(01)01069-2
8.
Lue
,
S. J.
,
Wang
,
W. T.
,
Mahesh
,
K. P. O.
,
Chen
,
J. Y.
, and
Yang
,
C. C.
,
2011
, “
Permeant Transport Properties and Cell Performance of Potassium Hydroxide Doped Poly(Vinyl Alcohol)/Fumed Silica Nanocomposites
,”
J. Membr. Sci.
,
367
(
1–2
), pp.
256
264
.10.1016/j.memsci.2010.11.009
9.
Ren
,
X.
,
Springer
,
T. E.
, and
Gottesfeld
,
S.
,
2000
, “
Water and Methanol Uptakes in Nafion Membranes and Membrane Effects on Direct Methanol Cell Performance
,”
J. Electrochem. Soc.
,
147
(
1
), pp.
92
98
.10.1149/1.1393161
10.
Chen
,
S.
,
Ye
,
F.
, and
Lin
,
W.
,
2010
, “
Effect of Operating Conditions on the Performance of a Direct Methanol Fuel Cell With PtRuMo/CNTs as Anode Catalyst
,”
Int. J. Hydrogen Energy
,
35
(
15
), pp.
8225
8233
.10.1016/j.ijhydene.2009.12.085
11.
Lee
,
S.
,
Kim
,
D.
,
Lee
,
J.
,
Chung
,
S. T.
, and
Ha
,
H. Y.
,
2005
, “
Comparative Studies of a Single Cell and a Stack of Direct Methanol Fuel Cells
,”
Korean J. Chem. Eng.
,
22
(
3
), pp.
406
411
.10.1007/BF02719419
12.
Ge
,
J.
, and
Liu
,
H.
,
2005
, “
Experimental Studies of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
142
(
1–2
), pp.
56
69
.10.1016/j.jpowsour.2004.11.022
13.
Song
,
S. Q.
,
Zhou
,
W. J.
,
Li
,
W. Z.
,
Sun
,
G.
,
Xin
,
Q.
,
Kontou
,
S.
, and
Tsiakaras
,
P.
,
2004
, “
Direct Methanol Fuel Cells: Methanol Crossover and Its Influence on Single DMFC Performance
,”
Ionics
,
10
(
5–6
), pp.
458
462
.10.1007/BF02378008
14.
Wang
,
B. Y.
,
Tseng
,
C. K.
, Shih,
C. M.
,
Pai
,
Y. L.
,
Kuo
,
H. P.
, and
Lue
,
S. J.
,
2014
, “
Polytetrafluoroethylene (PTFE)/Silane Cross-Linked Sulfonated Poly(Styrene-Ethylene/Butylene-Styrene) (sSEBS) Composite Membrane for Direct Alcohol and Formic Acid Fuel Cells
,”
J. Membr. Sci.
,
464
, pp.
43
54
.10.1016/j.memsci.2014.03.076
15.
Choi
,
W. C.
,
Kim
,
J. D.
, and
Woo
,
S. I.
,
2001
, “
Modification of Proton Conducting Membrane for Reducing Methanol Crossover in a Direct-Methanol Fuel Cell
,”
J. Power Sources
,
96
(
2
), pp.
411
414
.10.1016/S0378-7753(00)00602-9
16.
Lue
,
S. J.
,
Shih
,
T. S.
, and
Wei
,
T. C.
,
2006
, “
Plasma Modification on a Nafion Membrane for Direct Methanol Fuel Cell Applications
,”
Korean J. Chem. Eng.
,
23
(
3
), pp.
441
446
.10.1007/BF02706747
17.
SAS
,
1998
, “
SAS User's Guide
,” SAS Institute, Inc., Cary, NC, Release 6.03.
18.
Yu
,
E. H.
,
Scott
,
K.
, and
Reeve
,
R. W.
,
2003
, “
A Study of the Anodic Oxidation of Methanol on Pt in Alkaline Solutions
,”
J. Electroanal. Chem.
,
547
(
1
), pp.
17
24
.10.1016/S0022-0728(03)00172-4
19.
Lue
,
S. J.
,
Wang
,
W. T.
,
Mahesh
,
K. P. O.
, and
Yang
,
C. C.
,
2010
, “
Enhanced Performance of a Direct Methanol Alkaline Fuel Cell (DMAFC) Using a Polyvinyl Alcohol/Fumed Silica/KOH Electrolyte
,”
J. Power Sources
,
195
(
24
), pp.
7991
7999
.10.1016/j.jpowsour.2010.06.049
20.
Lue
,
S. J.
,
Pan
,
W. H.
,
Chang
,
C. M.
, and
Liu
,
Y. L.
,
2012
, “
High-Performance Direct Methanol Alkaline Fuel Cells Using Potassium Hydroxide-Impregnated Polyvinyl Alcohol/Carbon Nano-Tube Electrolytes
,”
J. Power Sources
,
202
, pp.
1
10
.10.1016/j.jpowsour.2011.10.091
21.
Wu
,
J. F.
,
Lo
,
C. F.
,
Li
,
L. Y.
,
Li
,
H. Y.
,
Chang
,
C. M.
,
Liao
,
K. S.
,
Hu
,
C. C.
,
Liu
,
Y. L.
, and
Lue
,
S. J.
,
2014
, “
Thermally Stable Polybenzimidazole/Carbon Nano-Tube Composites for Alkaline Direct Methanol Fuel Cell Applications
,”
J. Power Sources
,
246
, pp.
39
48
.10.1016/j.jpowsour.2013.05.171
22.
Pan
,
W. H.
,
Lue
,
S. J.
,
Chang
,
C. M.
, and
Liu
,
Y. L.
,
2011
, “
Alkali Doped Polyvinyl Alcohol/Multi-Walled Carbon Nano-Tube Electrolyte for Direct Methanol Alkaline Fuel Cell
,”
J. Membr. Sci.
,
376
(
1–2
), pp.
225
232
.10.1016/j.memsci.2011.04.026
23.
Lo
,
C. F.
,
Wu
,
J. F.
,
Li
,
H. Y.
,
Hung
,
W. S.
,
Shih
,
C. M.
,
Hu
,
C. C.
,
Liu
,
Y. L.
, and
Lue
,
S. J.
,
2013
, “
Novel Polyvinyl Alcohol Nanocomposites Containing Carbon Nano-Tubes With Fe3O4 Pendants for Alkaline Fuel Cell Applications
,”
J. Membr. Sci.
,
444
, pp.
41
49
.10.1016/j.memsci.2013.05.001
24.
Wang
,
B. Y.
,
Lin
,
H. K.
,
Liu
,
N. Y.
,
Mahesh
,
K. P. O.
, and
Lue
,
S. J.
,
2013
, “
Cell Performance Modeling of Direct Methanol Fuel Cells Using Proton-Exchange Solid Electrolytes: Effective Reactant Diffusion Coefficients in Porous Diffusion Layers
,”
J. Power Sources
,
227
, pp.
275
283
.10.1016/j.jpowsour.2012.11.029
25.
Jung
,
D. H.
,
Lee
,
C. H.
,
Kim
,
C. S.
, and
Shin
,
D. R.
,
1998
, “
Performance of a Direct Methanol Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
71
(
1–2
), pp.
169
173
.10.1016/S0378-7753(97)02793-6
26.
Karimi
,
G.
, and
Li
,
X.
,
2005
, “
Electroosmotic Flow Through Polymer Electrolyte Membranes in PEM Fuel Cells
,”
J. Power Sources
,
140
(
1
), pp.
1
11
.10.1016/j.jpowsour.2004.08.018
27.
Yang
,
C. C.
,
Lue
,
S. J.
, and
Shih
,
J. Y.
,
2011
, “
A Novel Organic/Inorganic Polymer Membrane Based on Poly(Vinyl Alcohol)/Poly(2-Acrylamido-2-Methyl-1-Propanesulfonic Acid/3-Glycidyloxypropyl Trimethoxysilane Polymer Electrolyte Membrane for Direct Methanol Fuel Cells
,”
J. Power Sources
,
196
(
10
), pp.
4458
4467
.10.1016/j.jpowsour.2011.01.051
28.
Kulikovsky
,
A. A.
,
2002
, “
The Voltage–Current Curve of a Direct Methanol Fuel Cell: ‘Exact’ and Fitting Equations
,”
Electrochem. Commun.
,
4
(
12
), pp.
939
946
.10.1016/S1388-2481(02)00494-0
29.
Seo
,
S. H.
, and
Lee
,
C. S.
,
2008
, “
Effect of Operating Parameters on the Direct Methanol Fuel Cell Using Air or Oxygen as an Oxidant Gas
,”
Energy Fuels
,
22
(
2
), pp.
1212
1219
.10.1021/ef700677y
30.
Abdelkareem
,
M. A.
, and
Nakagawa
,
N.
,
2007
, “
Effect of Oxygen and Methanol Supply Modes on the Performance of a DMFC Employing a Porous Plate
,”
J. Power Sources
,
165
(
2
), pp.
685
691
.10.1016/j.jpowsour.2006.12.075
31.
Li
,
Y. S.
,
Zhao
,
T. S.
, and
Liang
,
Z.
,
2009
, “
Performance of Alkaline Electrolyte-Membrane-Based Direct Ethanol Fuel Cells
,”
J. Power Sources
,
187
(
2
), pp.
387
392
.10.1016/j.jpowsour.2008.10.132
32.
Huang
,
C. C.
,
Liu
,
Y. L.
,
Pan
,
W. H.
,
Chang
,
C. M.
,
Shih
,
C. M.
,
Chu
,
H. Y.
,
Chien
,
C. H.
,
Juan
,
C. H.
, and
Lue
,
S. J.
,
2014
, “
Direct Borohydride Fuel Cell Performance Using Hydroxide-Conducting Polymeric Nanocomposite Electrolytes
,”
J. Polym. Sci., Part B: Polym. Phys.
,
51
(
24
), pp.
1779
1789
.10.1002/polb.23250
You do not currently have access to this content.